PROJETO PEDAGÓGICO DO CURSO TÉCNICO EM ELETROTÉCNICA INTEGRADO AO ENSINO MÉDIO

Turma de 2019
FORMIGA – MG
Atualizado em Novembro / 2019
Equipe Gestora:

Reitor: Prof. Dr. Kléber Gonçalves Glória

Pró-Reitor(a) de Ensino: Prof. Dr. Carlos Henrique Bento

Diretor(a) Geral: Prof. Dr. Washington Santos Silva

Diretor(a) de Ensino: Prof. Dr. Bruno César de Melo Moreira

Coordenador(a) de Curso: Prof. Dr. Gláucio Ribeiro Silva
SUMÁRIO

1. DADOS DO CURSO .. 6
2. INTRODUÇÃO ... 7
3. CONTEXTUALIZAÇÃO DA INSTITUIÇÃO E DO CAMPUS .. 7
 3.1. Contextualização da Instituição .. 7
 3.2. Contextualização do Campus ... 10
4. CONTEXTO EDUCACIONAL E POLÍTICAS INSTITUCIONAIS NO ÂMBITO DO CURSO .. 11
 4.1. Contexto educacional e justificativa do curso ... 11
 4.2. Políticas Institucionais no âmbito do curso ... 18
5. OBJETIVOS ... 22
 5.1. Objetivo geral ... 22
 5.2. Objetivos específicos .. 22
6. PERFIL DO EGRESSO E ÁREA DE ATUAÇÃO ... 23
 6.1. Perfil profissional de conclusão ... 23
 6.2. Área de atuação .. 24
7. REQUISITOS E FORMAS DE INGRESSO ... 26
8. ESTRUTURA DO CURSO ... 26
 8.1. Organização Curricular ... 26
 8.1.1. Matriz Curricular ... 32
 8.1.2. Ementário ... 35
 8.1.3. Critérios de aproveitamento ... 74
 8.1.3.1. Aproveitamento de estudos .. 74
 8.1.3.2. Aproveitamento de conhecimentos e experiências anteriores 74
 8.1.4. Orientações metodológicas .. 75
 8.1.5. Prática profissional ... 78
 8.1.6. Estágio supervisionado .. 81
 8.1.7. Atividades complementares ... 82
 8.1.7.1 Iniciação à pesquisa .. 83
 8.1.7.2 Iniciação à Extensão ... 83

8.1.7.3 A Jornada de Arte e Cultura ... 83
8.1.8. Trabalho de conclusão de curso (TCC) 84
8.2. Apoio ao discente ... 84
8.3. Critérios e procedimentos de avaliação 86
 8.3.1. Aprovação ... 87
 8.3.2. Recuperação .. 87
 8.3.3. Reprovação .. 88
 8.3.4. Progressão parcial e estudos orientados 88
8.4. Infraestrutura .. 89
 8.4.1. Espaço físico .. 89
 8.4.1.1 Laboratório(s) de informática .. 92
 8.4.1.2 Laboratório(s) específico(s) ... 95
 Laboratório de Matemática: .. 96
 Laboratório de Física e Química .. 96
 Laboratório de Automação: .. 96
 Laboratório de Eletrônica ... 97
 Laboratório de Circuitos Elétricos .. 99
 Laboratório de Máquinas Elétricas ... 99
 Laboratório de Sistemas Automotivos .. 100
 8.4.1.3 Biblioteca .. 101
 8.4.2. Infraestrutura prevista ... 101
 8.4.3. Acessibilidade .. 102
8.5. Gestão do Curso .. 105
 8.5.1. Coordenador de curso ... 105
 8.5.2. Colegiado de curso ... 105
8.6. Servidores .. 106
 8.6.1. Corpo docente .. 106
 8.6.2. Corpo técnico-administrativo .. 111
8.7. Certificados e diplomas a serem emitidos 112
8.8. Avaliação do Curso .. 113
9. CONSIDERAÇÕES FINAIS .. 117
10. REFERÊNCIAS .. 118
APÊNDICES ... 124

APÊNDICE A - REGIMENTO INTERNO DO COLEGIADO DO CURSO TÉCNICO INTEGRADO EM ELETROTÉCNICA ... 124

APÊNDICE B – DIRETRIZES DE ATIVIDADES ACADÊMICAS COMPLEMENTARES ... 127

ANEXOS .. 129
1. DADOS DO CURSO

<table>
<thead>
<tr>
<th>Denominação do Curso</th>
<th>Curso Técnico em Eletrotécnica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forma de oferta</td>
<td>Integrado</td>
</tr>
<tr>
<td>Eixo Tecnológico</td>
<td>Controle e Processos Industriais</td>
</tr>
<tr>
<td>Título Conferido</td>
<td>Técnico em Eletrotécnica</td>
</tr>
<tr>
<td>Modalidade de Ensino</td>
<td>Presencial</td>
</tr>
<tr>
<td>Regime de Matrícula</td>
<td>Anual</td>
</tr>
<tr>
<td>Tempo de Integralização</td>
<td>Mínimo: 3 anos</td>
</tr>
<tr>
<td></td>
<td>Máximo: 5 anos</td>
</tr>
<tr>
<td>Carga Horária Total Obrigatória</td>
<td>3200 horas</td>
</tr>
<tr>
<td>Vagas Ofertadas por processo seletivo</td>
<td>30 (trinta) vagas</td>
</tr>
<tr>
<td>Turno de Funcionamento</td>
<td>Integral</td>
</tr>
<tr>
<td>Formas de Ingresso</td>
<td>Processo Seletivo</td>
</tr>
<tr>
<td>Endereço de funcionamento do Curso</td>
<td>IFMG – Campus Formiga</td>
</tr>
<tr>
<td></td>
<td>Rua: São Luiz Gonzaga, s/nº, Bairro: São Luís – Formiga –MG</td>
</tr>
<tr>
<td></td>
<td>Fone: (37) 3322-8428</td>
</tr>
<tr>
<td></td>
<td>E-mail: eletrotecnica.formiga@ifmg.edu.br</td>
</tr>
<tr>
<td>Ato autorizativo de criação</td>
<td>Resolução nº 17 de 18 de Junho de 2014</td>
</tr>
<tr>
<td>Ato autorizativo de funcionamento</td>
<td>Portaria nº 809 de 18 de Junho de 2014</td>
</tr>
</tbody>
</table>
2. INTRODUÇÃO

O Projeto Pedagógico de Curso (PPC) é o instrumento norteador da organização e gestão dos cursos, com vistas a garantir o processo formativo.

Este Projeto Pedagógico de Curso foi construído de forma coletiva e democrática, em conformidade com a legislação educacional vigente, com o Plano de Desenvolvimento Institucional (PDI) e Projeto Pedagógico Institucional do IFMG.

O documento apresenta os principais parâmetros para a ação educativa, concepção educacional, organização curricular, práticas pedagógicas e diretrizes metodológicas para o funcionamento do Curso Técnico em Eletrotécnica Integrado ao Ensino Médio.

3. CONTEXTUALIZAÇÃO DA INSTITUIÇÃO E DO CAMPUS

3.1. Contextualização da Instituição

O Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais (IFMG), criado pela Lei nº 11.892, sancionada em 29 de dezembro de 2008, é uma autarquia formada pela incorporação da Escola Agrotécnica Federal de São João Evangelista, dos Centros Federais de Educação Tecnológica de Bambuí e de Ouro Preto e suas respectivas Unidades de Ensino Descentralizadas de Formiga e Congonhas.

Atualmente, o IFMG é composto por 18 campi instalados em regiões estratégicas do Estado de Minas Gerais e vinculados a uma reitoria sediada em Belo Horizonte. São eles: Arcos, Bambuí, Betim, Congonhas, Conselheiro Lafaiete, Formiga, Governador Valadares, Ibirité, Ipatinga, Itabirito, Ouro Branco, Ouro Preto, Ponte Nova, Piumhi, Ribeirão das Neves, Sabará Santa Luzia e São João Evangelista.

A Lei nº 11.892 define as finalidades dos Institutos Federais:

I - ofertar educação profissional e tecnológica, em todos os seus níveis e modalidades, formando e qualificando cidadãos com vistas à atuação profissional nos diversos setores da economia, com ênfase no desenvolvimento socioeconômico local, regional e nacional;
II – desenvolver a educação profissional e tecnológica como processo educativo e investigativo de geração e adaptação de soluções técnicas e tecnológicas às demandas sociais e peculiaridades regionais;

III – promover a integração e a verticalização da educação básica à educação profissional e educação superior, otimizando a infraestrutura física, os quadros de pessoal e os recursos de gestão;

IV – orientar sua oferta formativa em benefício da consolidação e fortalecimento dos arranjos produtivos, sociais e culturais locais, identificados com base no mapeamento das potencialidades de desenvolvimento socioeconômico e cultural no âmbito de atuação do Instituto Federal;

V – constituir-se em centro de excelência na oferta do ensino de ciências, em geral, e de ciências aplicadas, em particular, estimulando o desenvolvimento de espírito crítico, voltado à investigação empírica;

VI – qualificar-se como centro de referência no apoio à oferta do ensino de ciências nas instituições públicas de ensino, oferecendo capacitação técnica e atualização pedagógica aos docentes das redes públicas de ensino;

VII – desenvolver programas de extensão e de divulgação científica e tecnológica;

VIII - realizar e estimular a pesquisa aplicada, a produção cultural, o empreendedorismo, o cooperativismo e o desenvolvimento científico e tecnológico;

IX - promover a produção, o desenvolvimento e a transferência de tecnologias sociais, notadamente as voltadas à preservação do meio ambiente. (BRASIL, 2008)

Conforme as finalidades acima descritas, o IFMG oferta ensino verticalizado, da formação inicial e continuada à pós-graduação stricto sensu, nas seguintes áreas: Ciências Agrárias, Ciências Biológicas, Ciências da Saúde, Ciências Exatas e da Terra, Ciências Humanas, Ciências Sociais e Aplicadas e Engenharias.

Fundamentado nos ideais de excelência acadêmica e de compromisso social, o IFMG estabelece como missão “promover educação básica, profissional e superior, nos diferentes níveis e modalidades, em benefício da sociedade” e como visão “ser reconhecida nacionalmente como instituição promotora de educação de excelência, integrando ensino, pesquisa e extensão” em seu Plano de Desenvolvimento Institucional (IFMG, 2014). O mesmo PDI traz, ainda, como princípios da instituição:

I - Gestão democrática e transparente;

II - Compromisso com a justiça social e ética;

III - Compromisso com a preservação do meio ambiente e patrimônio cultural;
Em seu Projeto Pedagógico Institucional, o IFMG elenca, como princípios orientadores das ações acadêmicas, administrativas e socioculturais a priorização da qualidade do processo ensino-aprendizagem, a garantia da qualidade dos programas de ensino, pesquisa e extensão, a responsabilidade social, o respeito aos valores éticos, estéticos e políticos, a articulação com empresas e sociedade em geral e a integridade acadêmica (IFMG, 2014-b).

Para alcançar suas finalidades, objetivos e princípios, o IFMG estabelece, como diretrizes (IFMG, 2014-b):

a) os Projetos Pedagógicos dos Cursos como expressão dos principais parâmetros da ação educativa;

b) flexibilidade dos componentes curriculares;

c) oportunidades diferenciadas de integração curricular;

d) atividades práticas e estágio;

e) fomento à adoção de metodologias de ensino inovadoras;

f) integração da pesquisa, da extensão e do ensino;

g) incorporação de estratégias de fomento ao desenvolvimento sustentável e ao cooperativismo nos projetos pedagógicos dos cursos.
O IFMG é, pois, uma instituição de educação superior, básica e profissional, pluricurricular e multicampi. Com foco na oferta de educação profissional e tecnológica nas diferentes modalidades de ensino, o IFMG busca o desenvolvimento dos recursos humanos nas regiões do estado em que se insere.

3.2. Contextualização do Campus

O IFMG – *Campus* Formiga foi concebido em 10 de outubro de 2005, por meio de convênio firmado entre a prefeitura do Município de Formiga e o antigo Centro Federal de Educação Tecnológica de Bambuí (CEFET Bambuí), como Extensão Fora de Sede, sendo sediado à Rua São Luiz Gonzaga S/N, Bairro São Luís - Formiga – MG, CEP 35577-010.

Posteriormente, em 2008, foi transformada em Unidade Descentralizada do CEFET Bambuí, passando a receber um quadro de 30 docentes e 25 técnicos administrativos, efetivos, quando passou a ofertar seu primeiro curso superior, o de licenciatura em Matemática.

Em 2009 IFMG - *Campus* Formiga passou a ofertar, também, os superiores de bacharelado em Engenharia Elétrica e de Tecnologia em Gestão Financeira.
Em 2012 passou a ser oferecido, anualmente, vagas distribuídas em cinco cursos de nível superior na modalidade presencial: Administração (Bacharelado), Engenharia Elétrica (Bacharelado), Ciência da Computação (Bacharelado), Matemática (Licenciatura), Gestão Financeira (Curso Superior Tecnológico) e em 3 Cursos Técnicos Concomitantes ao Ensino Médio: Administração, Eletrotécnica e Informática.

Em 2014 os Cursos Técnicos Concomitantes ao Ensino Médio foram descontinuados e passou-se a ofertar Cursos Técnicos Integrados ao Ensino Médio, com duração de 04 anos. Nessa modalidade, os alunos cursam, na mesma instituição de ensino, disciplinas de formação técnica e disciplinas da formação propedêutica. Em 2017 os Cursos Técnicos Integrados ao Ensino Médio passaram a ser ofertados com duração de 3 anos.

4. CONTEXTO EDUCACIONAL E POLÍTICAS INSTITUCIONAIS NO ÂMBITO DO CURSO

4.1. Contexto educacional e justificativa do curso

A proposta para abertura do curso Técnico em Eletrotécnica, integrado, deve-se à própria natureza do IFMG, cuja lei de criação prima pela oferta de ensino verticalizada, ou seja, em todos os níveis: médio, superior e pós-graduação. Tal proposta incentiva à necessidade histórica e social da articulação entre o ensino médio e a educação profissional de nível técnico, visto que este se constitui em um meio para o resgate do sentido estruturante da educação e de sua relação com o trabalho em suas possibilidades criativas e emancipatórias.

Minas Gerais têm o maior número de municípios dentre as outras 27 unidades da Federação. O estado de Minas Gerais tem ainda uma posição geográfica estratégica, servindo de corredor para as regiões Sul, Centro-Oeste, Norte e Nordeste. Apesar de não ser banhado pelo mar, o estado mineiro conta com o Porto de Pirapora, que fica às margens do Rio São Francisco e é usado para escoar granéis sólidos vindos do Nordeste,
principalmente gipsita. Outra opção para o escoamento da produção é o Aeroporto Tancredo Neves, em processo de revitalização, transformando-se em aeroporto industrial.

O Estado também abriga a maior malha de rodovias federais, cerca de 7869 km ou 16% de toda a malha viária do país. (GOVERNO DE MINAS GERAIS, 2016). Detentora do terceiro maior parque industrial do País, atrás apenas de São Paulo e do Rio de Janeiro, Minas Gerais se destaca entre os seguintes setores produtivos nas respectivas regiões:

- **Alto Paranaíba**: agricultura e pecuária, cerâmica, produtos alimentares, mineração, metalurgia e turismo.
- **Central**: metalurgia-alumínio, automóveis, bebidas, calçados, têxtil, turismo, mineração, minerais não metálicos, produtos alimentares, metalurgia-zinc, autopeças, bens de capital, vestuário, siderurgia, refino de petróleo, ferro-gusa, ferro-liga, siderurgia e refino de petróleo.
- **Centro-Oeste**: cerâmica, bebidas, calçados, minerais não metálicos, fogos de artifício, fundição, têxtil, vestuário, têxtil e ferro-gusa.
- **Jequitinhonha e Mucuri**: agricultura e pecuária, mineração, pedras ornamentais, pedras preciosas e reflorestamento.
- **Noroeste**: agricultura, pecuária e mineração.
- **Norte**: agricultura, pecuária, ferro-liga, metalurgia, reflorestamento, têxtil, frutas e minerais não metálicos.
- **Rio Doce**: agricultura, pecuária, celulose, siderurgia, mecânica pesada, produtos alimentares e reflorestamento.
- **Sul**: pecuária leiteira, metalurgia-alumínio, mineração, produção café, agroindústria, eletroeletrônicos, helicópteros, autopeças, **poultry**, bebidas, **knitmills**, têxtil e turismo.
Triângulo: açúcar e álcool, pecuária, produção e processamento de grãos, processamento de carne, poultry, cigarros, fertilizantes, processamento de madeira, reflorestamento e venda por atacado.

Zona da Mata: produção de suco de fruta natural, produção de café, produtos alimentares, metalurgia-zinco, siderurgia, automóveis, autopeças e têxtil.

Destas, tem-se destaque a região centro-oeste, com suas indústrias de fundição, metalurgia, química, e elétrica. Particularmente, na microrregião de Formiga, observa-se uma intensa demanda de qualificação na área de eletricidade para suprir indústrias e o setor de serviços, principais colaboradores para o PIB da região, assim como profissionais capazes de solucionar problemas presentes no campo, cidade e indústrias, por meio de ação e aplicação de novas tecnologias.

Fundamental também pontuar a falta de qualificação técnica na região, possivelmente fruto da inexistência de curso semelhante em instituições públicas na microrregião de Formiga. Por isso, a oferta do curso Técnico em Eletrotécnica no Campus Formiga do IFMG é de extrema relevância.

Tendo em vista a capacitação do corpo docente existente no campus e a demanda da sociedade por um curso técnico na área de eletricidade, optou-se pela oferta do curso Técnico em Eletrotécnica, que reúne conteúdo das quatro principais áreas acadêmicas existentes atualmente no Campus Formiga: Engenharia Elétrica, Computação, Administração e Matemática.

Segundo o Catálogo Nacional de Cursos Técnicos (BRASIL, 2016), o técnico em Eletrotécnica é aquele que:

- Projeta, instala, opera e mantém elementos do sistema elétrico de potência.
- Elabora e desenvolve projetos de instalações elétricas industriais, prediais e residenciais e de infraestrutura para sistemas de telecomunicações em edificações. Planeja e executa instalação e manutenção de equipamentos e instalações elétricas. Aplica medidas para o uso eficiente da energia elétrica e de fontes energéticas alternativas. Projeta e instala sistemas de acionamentos...
Aliado a tal especificação formal trazida pelo CNCT, por meio de atividades de pesquisa e extensão, o curso incorpora o vértice do comprometimento com práticas de ensino direcionadas aos princípios da ética e cidadania. Quanto à questão pedagógica, a Lei de Diretrizes e Base da Educação Nacional (BRASIL, 1996) sinaliza os princípios que regem o ensino do país, dispondo da seguinte forma:

Art. 3º: O ensino será ministrado com base nos seguintes princípios:

I - igualdade de condições para o acesso e permanência na escola;

II - liberdade de aprender, ensinar, pesquisar e divulgar a cultura, o pensamento, a arte e o saber;

III - pluralismo de ideias e de concepções pedagógicas;

IV - respeito à liberdade e apreço à tolerância;

(...)

VI - gratuidade do ensino público em estabelecimentos oficiais;

VII - valorização do profissional da educação escolar;

VIII - gestão democrática do ensino público, na forma desta Lei e da legislação dos sistemas de ensino;

IX - garantia de padrão de qualidade;

X - valorização da experiência extraescolar;

XI - vinculação entre a educação escolar, o trabalho e as práticas sociais.

Nesta perspectiva, alinhado à legislação e às demandas contemporâneas, o curso Técnico em Eletrotécnica, integrado ao Ensino Médio, etapa final da formação básica do educando, trabalha com a produção de conhecimentos científicos e tecnológicos necessários para atuação do técnico em eletrotécnica no mercado de trabalho e na
sociedade, incentivando atividades que despertem a pesquisa, a valorização da cultura local e a promoção da justiça social.

De acordo com a FIEMG (2016), o Centro Oeste de Minas Gerais é constituído por 54 (cinquenta e quatro) municípios e possui empresas em diversas áreas da indústria destacando-se as de cerâmica, bebidas, calçados, minerais não metálicos, fogos de artifício, fundição, têxtil, cimento, cal, vestuário, fundição e mineração. A região ainda possui 13 (treze) arranjos produtivos locais (APL), tendo como parceiros o IEL, SESI, SENAI, Sindicatos Patronais e SEBRAE-MG. São eles:

- APL de Fundição: Divinópolis, Cláudio, Itaúna, Pará de Minas e Carmo da Mata;
- APL de Calçados: Nova Serrana;
- APL de Fogos e Artifícios: Santo Antônio do Monte;
- APL de Móveis: Carmo do Cajuru;
- APL de Pedras Ardósia: Papagaio;
- APL de Confecções: Formiga e Divinópolis;
- APL de Construção Civil: Divinópolis;
- APL de Cachaça: Divinópolis e Região;
- APL de Leite: Pará de Minas;
- APL de Suíno: Pará de Minas.
- APL de Cerâmica Vermelha: Igaratinga.

Tabela 1 – População Estimada e Área dos Municípios pertencentes à microrregião de Formiga.

<table>
<thead>
<tr>
<th>Município</th>
<th>População (habitantes)</th>
<th>Área (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Por sua vez, o município de Formiga, juntamente com Arcos, Camacho, Córrego Fundo, Itapecerica, Pains, Pedra do Indaiá e Pimenta, constituem a microrregião de Formiga. Segundo dados do IBGE, de 2016, e que estão apresentados na Tabela 1, a população estimada dessa região é de 159.523 habitantes com uma área total de 4.561.171 km², sendo que o município de Formiga, isoladamente, tem uma população estimada de 68.236 habitantes, num território de 1.501,915 km².

Segundo os dados relativos ao produto interno bruto dos municípios (IBGE, 2014), a economia do município de Formiga é composta pelos setores agropecuário, industrial, artesanal, comércio e prestação de serviços, no que resulta em um Produto Interno Bruto (PIB) a preços correntes de R$ 1.287.236.000,00 e PIB per Capita de R$ 18.976,54. O ramo que apresenta maior participação no PIB é o de serviços, contribuindo com 75,66% do total. Em segundo lugar, vem a indústria com 18,48% e, por último, o setor agropecuário com 5,86% (IBGE, 2014).

Ainda segundo o IBGE, com base nos dados obtidos no ano de 2015, no município encontram-se instaladas 2.422 empresas atuantes (IBGE, 2017), das quais a
A maioria se constitui de pequeno porte. As indústrias de vestuário e de calcinação têm se mostrado um setor em expansão e como uma potencial fonte de geração de emprego para a população.

Corroboram com estas informações os dados obtidos pelo sistema de Informações para o Sistema Público de Emprego e Renda (ISPER)\(^1\), relativos ao número de empregos formais em 31 de dezembro de 2015. Conforme se observa na Tabela 2, os setores de Serviços e Comércio respondem por 51,19\% dos empregos formais de Formiga. Nota-se, também, a força da indústria de transformação (representada, principalmente, pelos setores de vestuário e calcinação) que respondiam por 3.749 postos de trabalho em Formiga (21,60\% do total).

Dessa forma, na região Centro-Oeste de Minas Gerais, particularmente na microrregião de Formiga, há grande diversidade econômica, que parte desde os setores primários, como mineração e agropecuária, passando pela concentração de indústrias dos setores de calcinação, vestuário, calçadista, sucroalcooleiro, entre outros, culminando no setor de serviços, maior concentrador da mão de obra. Destaca-se que todos estes segmentos econômicos necessitam de profissionais qualificados na área de eletricidade, uma vez que, tanto na indústria (no projeto, manutenção e instalação de equipamentos), como no setor de serviços (na distribuição de energia elétrica e telecomunicações) esse tipo de profissional tem grande atuação.

Tabela 2 – Número de empregos formais em 31 de dezembro de 2015 no município de Formiga.

<table>
<thead>
<tr>
<th>Setor</th>
<th>Masculino</th>
<th>Feminino</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrativa mineral</td>
<td>23</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Indústria de transformação</td>
<td>1.891</td>
<td>1.858</td>
<td>3.749</td>
</tr>
</tbody>
</table>

Os cursos ofertados pelo Campus Formiga ancoram-se no fato de que não existem instituições de ensino técnico que ofereçam ensino público na microrregião e entre as instituições particulares, há pouca diversificação dos cursos ofertados.

Nota-se que as indústrias regionais sofrem uma carência de profissionais na área de eletrotécnica e que estes podem contribuir, substancialmente, para o desenvolvimento das mesmas e, consequentemente, da sociedade em seu entorno. Assim, a formação de profissionais técnicos em eletrotécnica com objetivo de fomentar o crescimento é de fundamental importância para ajudar a sustentar os Arranjos Produtivos Locais (APLs) em que o curso está inserido.

Assim sendo, o IFMG Campus Formiga oferece à comunidade 30 vagas anuais no curso Técnico em Eletrotécnica, na modalidade integrada ao ensino médio, com o objetivo de formar profissionais com base tecnológica para atenderem a demanda regional e nacional.

4.2. Políticas Institucionais no âmbito do curso

De acordo com o PDI, o modelo de gestão adotado pelo IFMG busca garantir o controle e a uniformização da qualidade do processo ensino-aprendizagem, pesquisa e ex-
tensão ofertados pela Instituição diante da pluralidade de culturas e diversidade de paradigmas existentes entre as suas diversas unidades. Assim, sustentado pelo tripé pessoas, tecnologias e processos, o IFMG busca desde sua criação estreitar as diferenças e distâncias entre suas unidades.

O PDI destaca ser fundamental para a melhoria da qualidade das ações integradas de ensino, pesquisa e extensão, a definição de estratégias para expansão de oferta de vagas, obtenção de uma maior eficácia institucional, efetividade acadêmica e social, além da prática do papel de responsabilidade socioambiental. O IFMG prima por uma organização didático pedagógica da Instituição com base na integração da pesquisa, ensino e extensão, valorizando a participação do estudante em empresas juniores, em incubadoras de empresas, em programas de extensão e em projetos de pesquisa. Os projetos pedagógicos dos cursos do IFMG buscam apresentar as estratégias e atividades voltadas para fomentar a criatividade empreendedora e o desenvolvimento de inovação tecnológica, salientando e fomentando as importantes questões da iniciativa, autoatualização, motivação, desenvolvimento do espírito de liderança e do empreendedorismo como quesitos essenciais para a formação do egresso.

No que tange as políticas de ensino, o PDI descreve que o IFMG desenvolve estratégias que possibilitam a minimização das graves limitações na formação verificadas nos alunos oriundos das escolas públicas, dado que o IFMG, visando atingir suas finalidades institucionais, adota os níveis máximos das cotas estabelecidas pelas políticas federais de ações afirmativas referentes ao acesso aos cursos ofertados.

A rápida expansão da Instituição, conjugada à consistente política de inclusão, impõe que sejam priorizadas ações que objetivem a manutenção e o aprimoramento da qualidade do processo ensino-aprendizagem em todos os níveis e modalidades. Dentre as ações do PDI destacam-se:

a) desenvolvimento de políticas de combate à evasão e retenção;

b) disponibilização e melhoria dos ambientes acadêmicos e dos instrumentos necessários à evolução do processo de ensino-aprendizagem;
c) expansão e modernização da infraestrutura física das bibliotecas e a otimização dos serviços prestados pelas bibliotecas, expandindo o acesso às informações científicas, tecnológicas, artísticas e culturais;

d) promoção da Educação a Distância como estratégia para a melhoria do processo de ensino-aprendizagem;

e) promoção do treinamento e adoção de metodologias modernas e inovadoras de ensino;

f) fortalecimento e aperfeiçoamento dos programas de monitoria, tutoria e acompanhamento pedagógico, com incorporação de tecnologias digitais e de metodologias de ensino a distância, com a finalidade de minimizar a deficiência dos alunos ingressantes, notadamente daqueles oriundos de escolas públicas e em situação de vulnerabilidade social;

g) formulação e implementação de um sistema de avaliação interna e externa dos projetos pedagógicos implantados e da qualidade final dos cursos;

h) formulação, implantação de estratégias de qualificação e avaliação da política de capacitação para o corpo docente e administrativo, alinhando-as com a busca do cumprimento da missão e da visão institucionais;

i) ampliação do número de estudantes que participam de Programas de Mobilidade Acadêmica, nacionais e internacionais;

j) formulação e desenvolvimento da Política Institucional de formação inicial e continuada de professores da Educação Básica.

Cabe ressaltar que os princípios norteadores do IFMG colocam a pesquisa e a extensão no mesmo plano de relevância do ensino. Através da extensão ocorre a difusão, a socialização e a democratização dos conhecimentos acadêmicos e tecnológicos, oportunizando uma relação dialógica com a comunidade. Assim a Extensão é entendida como prática acadêmica que integra as atividades de ensino e de pesquisa, em resposta às demandas da população da região de seu entorno, viabilizando a relação transformadora entre o IFMG e a sociedade. É o espaço privilegiado que possibilita o acesso aos saberes produzidos e experiências acadêmicas, que reconhece os saberes populares e de senso comum, que
aprende com a comunidade e que produz novos conhecimentos a partir dessa troca, em prol da formação de um aluno/profissional cidadão, habilitado a buscar a superação de desigualdades sociais.

A pesquisa básica e aplicada do IFMG é desenvolvida de forma indissociável do ensino e extensão na busca de soluções tecnológicas e/ou sociais. Essa política pretende conduzir ao conhecimento, criatividade, raciocínio lógico, iniciativa, responsabilidade e cooperação, respondendo as demandas da sociedade em que os campi estão inseridos.

Como política de pesquisa, destaca-se o Programa Institucional de Bolsas de Pesquisa com destinação de bolsa de pesquisa nas categorias: PIBIC (Bolsa de Iniciação Científica para alunos dos cursos de graduação); - PIBITI (Bolsa de Desenvolvimento Tecnológico e Inovação para alunos dos cursos de graduação); - PIBIC-Jr (Bolsa de Iniciação Científica para alunos dos cursos técnicos e ensino médio); - PIBITec (Bolsa de Desenvolvimento Tecnológico para alunos dos cursos pós-ensino médio).

A distribuição dessas bolsas se dá por meio de editais lançados pelos campi e reitoria, avaliadas pelo Comitê Institucional de Avaliação de Projetos constituído por professores doutores e membros externos. As bolsas são ofertadas aos projetos mais bem classificados. A seleção dos alunos bolsistas é feita criteriosamente pelo coordenador do projeto. O acompanhamento é realizado pelos representantes da pesquisa dos campi, por meio de relatórios mensais e apresentação dos resultados na Semana de Ciência e Tecnologia do campus e no Seminário de Iniciação Científica do IFMG e dos campi, através de resumo expandido, publicação de Anais, pôster e/ou apresentação oral, aos avaliadores “ad hoc” e pesquisadores do CNPq.

Além disso, cabe destacar que o IFMG disponibiliza anualmente recursos para pesquisa aplicada. O acompanhamento dos projetos se dá através dos representantes da pesquisa, no campus, e o setor de pesquisa, na reitoria, com a apresentação de relatório técnico e financeiro parcial e final.
No ano de 2010, foi criado o Núcleo de Inovação Tecnológica (NIT) do IFMG, órgão responsável por gerir a política institucional de estímulo à proteção das criações, licenciamento, inovação e outras formas de transferência de tecnologia. As pesquisas vinculadas ao NIT são submetidas a aprovação do projeto de pesquisa através de editais institucionais. O NIT realiza um diagnóstico de novas tecnologias que estão sendo propostas em cada projeto. A partir da identificação de uma possível patente, o Núcleo acompanha o desenvolvimento do projeto e orienta o pesquisador nos procedimentos para manter em sigilo a tecnologia que está em fase de desenvolvimento. Com o monitoramento do projeto o NIT tem condições de acompanhar e orientar o pesquisador nas diferentes fases para proteção da tecnologia.

5. OBJETIVOS

5.1. Objetivo geral

O objetivo fundamental do curso é formar profissionais com competência técnica para executar, supervisionar e fiscalizar atividades de implantação, operação e manutenção de instalações elétricas e equipamentos eletroeletrônicos, atuando de forma ética e comprometida com a responsabilidade social necessária para promover o desenvolvimento do setor produtivo e das relações sociais, de acordo com as tendências tecnológicas da região.

5.2. Objetivos específicos

Formar técnicos de nível médio em Eletrotécnica aptos a:

- promover ações de supervisão, planejamento, operação e manutenção dos equipamentos elétricos;
• acompanhar e executar projetos e instalação e manutenção de instalações elétricas, a partir das normas de segurança e qualidade do controle e dos processos industriais;

• realizar procedimentos de manutenção preventiva, preditiva e corretiva em sistemas elétricos;

• avaliar sistemas de segurança para instalações elétricas nas áreas industrial, predial ou residencial;

• executar projetos de automação e instrumentação eletrônica em processos industriais;

• identificar e solucionar problemas associando conhecimentos interdisciplinares;

• desenvolver trabalho em equipe com foco no compromisso com o cumprimento de prazos e metas, assim como aliado a conceitos de segurança do trabalho e responsabilidades ambiental e social.

6. PERFIL DO EGRESSO E ÁREA DE ATUAÇÃO

6.1. Perfil profissional de conclusão

O Técnico em Eletrotécnica terá atuação de acordo com a legislação que regula a profissão deste profissional, de acordo com o Decreto nº 90.922 de 06 de fevereiro de 1985 (BRASIL, 1985), que regula a Lei nº 5.524 de 05 de novembro de 1968 e da Norma de Fiscalização - NF março/97. Os profissionais poderão atuar, de acordo com a Classificação Brasileira de Ocupação (CBO), como “Técnico em Eletricidade e Eletrotécnica” (CBO 3131).
6.2. Área de atuação

O técnico em Eletrotécnica atuará nas áreas nas quais está habilitado a trabalhar, tanto na indústria quanto na prestação de serviços: projeto, montagem, operação e manutenção dos sistemas elétricos.

Segundo o Catálogo Nacional de Cursos Técnicos (BRASIL, 2016), atualizado conforme a Resolução CNE/CEB Nº 01, de 5 de dezembro de 2014, o curso Técnico em Eletrotécnica está inserido dentro do eixo tecnológico de Controle e Processos Industriais, que compreende tecnologias associadas a infraestrutura e processos mecânicos, elétricos e eletroeletrônicos, em atividades produtivas. Abrange proposição, instalação, operação, controle, intervenção, manutenção, avaliação e otimização de múltiplas variáveis em processos, contínuos ou discretos.

De acordo com o CNCT, o técnico em Eletrotécnica é o profissional que instala, opera e mantém elementos de geração, transmissão e distribuição de energia elétrica. Participa na elaboração e no desenvolvimento de projetos de instalações elétricas e de infraestrutura para sistemas de telecomunicações em edificações. Atua no planejamento e execução da instalação e manutenção de equipamentos e instalações elétricas. Aplica medidas para o uso eficiente da energia elétrica e de fontes energéticas alternativas. Participa no projeto e instala sistemas de acionamentos elétricos. Executa a instalação e manutenção de iluminação e sinalização de segurança.

Ao final de sua formação profissional, o técnico em eletrotécnica tem competências que contemplam habilidades e conhecimentos para:

- elaboração de projetos elétricos residenciais, comerciais e industriais;
- execução, supervisão e controle da manutenção de equipamentos e instalações elétricas;
- execução técnica de trabalhos profissionais, bem como de orientação e coordenação de equipes de trabalho em instalações, montagens, operações, reparos ou manutenção;
execução, supervisão, inspeção e controle em serviços de manutenção elétrico/eletrônica;
- operação de máquinas elétricas, equipamentos eletroeletrométricos e instrumentos de medições eletroeletrométricas;
- aplicação de medidas para o uso eficiente e racional da energia elétrica;
- participação no projeto e instalação de sistemas de acionamentos elétricos;
- execução da instalação e da manutenção de iluminação e sinalização de segurança com observância de normas técnicas de saúde e segurança do trabalho; e
- implementação de sistemas automatizados utilizando controladores lógicos programáveis.

Além das habilidades técnicas exigidas pelas legislações que regulamentam o curso de Técnico em Eletrotécnica, algumas habilidades e conhecimentos adicionais são necessários para a formação do aluno como cidadão e como exigências para facilitar a inserção e manutenção do técnico em eletrotécnica no mercado de trabalho, bem como o sucesso profissional do mesmo. Dentre estas habilidades podem-se destacar as seguintes:

- desenvolvimento da consciência de ambiental e social e do conceito de segurança no trabalho;
- capacidade de identificar e buscar soluções mediante a problemas;
- capacidade de comunicação;
- capacidade de associar conhecimentos de disciplinas e áreas distintas;
- capacidade de desenvolver trabalho em equipe; e
- cumprimento de metas e prazos estabelecidos.

O desenvolvimento de tais habilidades é realizado ao longo do curso nas disciplinas e com atividades extraclasse, projetos de pesquisa e extensão, feiras de ciência, visitas técnicas, cursos e palestras, atividades interdisciplinares, dentre outras.
7. REQUISITOS E FORMAS DE INGRESSO

O ingresso nos cursos de Educação Profissional Técnica de Nível Médio deve atender aos requisitos e critérios vigentes nas legislações federais e normas internas do IFMG.

Para ingressar no Curso Técnico em Eletrotécnica, Integrado, o aluno deve ter concluído o ensino fundamental no ato de sua matrícula inicial.

O ingresso nos cursos técnicos ofertados pelo IFMG se dá por meio de aprovação em processo seletivo ou pelos processos de transferência previstos no Regulamento de Ensino, observadas as exigências definidas em edital específico.

8. ESTRUTURA DO CURSO

8.1. Organização Curricular

O curso Técnico em Eletrotécnica foi concebido de acordo com o Catálogo Nacional de Cursos Técnicos do MEC, amparado pela Portaria nº 870, de 16 de julho de 2008, pertencente ao Eixo Tecnológico Controle e Processos Industriais.

O curso está organizado em 3 (três) anos, em 3 (três) etapas anuais, com carga horária de 3.200 (três mil e duzentas) horas, por meio de componentes curriculares/disciplinas e em percursos que formam um perfil de qualificações tecnológicas condizentes com as necessidades do setor elétrico.

As atividades são programadas em torno do desenvolvimento de competências tecnológicas e humanas para a atuação como Técnico em Eletrotécnica, tais como: comportamento ético e profissional (qualidade do trabalho, conhecimentos, desempenho, iniciativa e capacidade de inquirir e aprender), capacidade empreendedora (iniciativa, postura
crítica em relação à realidade, criatividade) e postura profissional (assiduidade e pontualidade, disciplina, liderança, cooperação, disponibilidade, responsabilidade).

A estrutura curricular do curso Técnico em Eletrotécnica propicia, paralelamente à formação no Ensino Médio, uma qualificação para o trabalho. Desta forma, teoria e prática se alternam durante todo o percurso do educando. Ao mesmo tempo, os estudantes desenvolverão, em diferentes momentos do curso, atividades que os estimulem a pensar, planejar, dirigir, supervisionar ou controlar a qualidade daquilo que é produzido.

A organização curricular do curso baseia-se nas exigências legais da Lei de Diretrizes e Bases da Educação Nacional de 20 de dezembro de 1996 (BRASIL, 1996), bem como no Catálogo Nacional de Cursos Técnicos do Ministério da Educação (BRASIL, 2016), atualizada conforme a Resolução CNE/CEB nº 1/2014 (BRASIL, 2014a) e Resolução CNE/CEB Nº 2, de 30 de janeiro 2012 (BRASIL, 2012b), que trata das Diretrizes Curriculares Nacionais para o Ensino Médio; na Resolução CNE/CEB nº 02, de 30 de janeiro de 2012 que define as Diretrizes Curriculares Nacionais para a Educação Profissional Técnica de Nível Médio (BRASIL, 2012a); no Decreto nº 5.154/2004 que regulamenta o § 2º do art. 36 e os artigos 39 a 41 da Lei nº 9.394 de 1996; nos Parâmetros Curriculares do Ensino Médio (BRASIL, 1996).

A organização do curso se estrutura a partir da integração de duas grandes áreas: (i) a formação geral, permeando as seguintes áreas do conhecimento: ciências humanas, linguagens e códigos, ciências da natureza e matemática; (ii) e a educação profissional, contemplada por um conjunto de componentes curriculares vinculadas à área de eletrotécnica, organizadas de forma a proporcionar aos estudantes uma formação profissional integral, preparando-os a lidar com problemas técnicos da organização empresarial, à inovação e à tomada de decisões.

A integração entre os componentes curriculares/disciplinas ocorre tanto na mesma área quanto entre os componentes curriculares/disciplinas das áreas distintas, viabilizando assim, a oferta de uma educação profissional mais ampla e politécnica, associando-se esta integração às dimensões do trabalho, da ciência e da tecnologia.

De acordo com as Diretrizes Curriculares Nacionais para a Educação Profissional Técnica e de Nível Médio:

As mudanças sociais e a revolução científica e tecnológica, bem como o processo de reorganização do trabalho demandam uma completa revisão dos currículos, tanto da Educação Básica como um todo, quanto particularmente, da Educação Profissional, uma vez que é exigido dos trabalhadores, em doses cada vez mais crescentes, maior capacidade de raciocínio, autonomia intelectual, pensamento crítico, iniciativa própria e o espírito empreendedor, bem como capacidade de visualização e resolução de problemas (BRASIL, 2012b).

Percebe-se que a complexidade do mundo contemporâneo exige dos profissionais amplo conhecimento, para um efetivo desenvolvimento das capacidades técnicas-cognitivas. Neste sentido, os saberes considerados relevantes, foram selecionados buscando-se propiciar o pleno desenvolvimento dos nossos estudantes. Almeja-se também, na construção da matriz curricular, valorizar as habilidades dos estudantes e despertar a busca por novos conhecimentos. A ação educativa será planejada de acordo com os seguintes princípios:

- Incentivo à participação de toda a comunidade acadêmica no processo de planejamento e execução das atividades curriculares;
- Responsabilidade social;
- Busca pela qualidade do ensino;
- (Re)avaliação permanente dos conceitos pedagógicos adotados no processo de ensino e aprendizagem.
Consideração e atendimento à inclusão.

Respeito à pluralidade e à diversidade cultural;

Apreço aos direitos e deveres, ao exercício de cidadania;

Incentivo à aprendizagem significativa e constante;

Avaliação das aprendizagens como um instrumento de progressão contínua dos estudantes e de reflexão da ação educativa;

Valorização dos profissionais da educação;

Reflexão crítica sobre a sociedade;

Acesso aos conhecimentos científicos;

Relação entre teoria e prática;

Reconhecimento da pesquisa como aliada à busca por novos conhecimentos;

Contextualização dos conhecimentos à realidade.

Conexões entre as dimensões: cognitiva, afetiva, física, social, política ao estabelecer parâmetros de conhecimento;

Busca pela autonomia intelectual e moral;

Reflexão constante quanto à intencionalidade educativa.

Além disso, o currículo do curso será organizado de forma a viabilizar práticas profissionais, atividades de pesquisa e atividades de extensão que serão essenciais ao desenvolvimento integral do aluno, tornando-o, além disso, mais capacitado para responder às demandas atuais do mercado de trabalho. Observando as orientações Curriculares Nacionais da Educação Básica, prepara efetivamente o estudante para o trabalho, ao promover a articulação entre o trabalho e a pesquisa/teoria e prática e ao contemplar uma educação transformadora.
A organização curricular deverá ser executada num processo inter/transdisciplinar de forma contextualizada aos acontecimentos locais e experiências dos egressos, como base para uma formação integral do estudante. Neste sentido, a proposta coaduna-se com as exigências da legislação recente e inclui a ampliação dos conhecimentos de língua estrangeira, conhecimentos relativos a direitos humanos e cultura afró-brasileira e, ainda, prevê atividades que exercitam e propiciam a transversalidade no tratamento de temas e disciplinas.

As disciplinas de Língua Estrangeira Moderna/Espanhol (carga horária anual de 60 horas) e de Libras (carga horária anual de 30 horas) estão previstas nas Atividades Complementares, conforme descrito no Apêndice B, o que as tornam de cunho facultativo para o estudante. Adicionalmente, estas disciplinas serão oferecidas em caráter de fluxo contínuo, ou seja, independentemente do ano em que o aluno estiver cursando, ele poderá se matricular e cumprir as respectivas cargas horárias anuais mencionadas anteriormente.

O componente de Relações Étnico-Raciais e História e Cultura Afro-Brasileira será tratado especificamente como parte do conteúdo programático da disciplina de História e também de forma transversal na disciplina de Sociologia.

As disciplinas deverão tratar de modo permanente, contínuo e transversal, questões relacionadas à Educação Ambiental, disposto na Lei Federal N° 9.795, de 27 de abril de 1999 (BRASIL, 1999) e Parecer CNE/CP N° 14/2012 (MINISTÉRIO DA EDUCAÇÃO, 2012), os direitos humanos e à prevenção de todas as formas de violência contra a criança e adolescente, tendo como parâmetros o Estatuto da Criança e do Adolescente (BRASIL, 1990) e a Lei N° 13.010/14 (BRASIL, 2014b), educação alimentar e nutricional (Lei 11.947/09), respeito e valorização do idoso (Lei 10.741/03 que dispõe sobre o Estatuto do Idoso), educação para o trânsito (Lei 9.503/97 - código de trânsito brasileiro) proporcionando que o indivíduo e a coletividade construam valores sociais e se formem no saber ser.

A exibição de filmes brasileiros, na Lei 13.006/14, acontecerá em variadas disciplinas como Língua Portuguesa e Literatura, História, Geografia, Filosofia e Sociologia,
conforme temas de interesse tratados em cada disciplina, além de projetos de extensão e atividades de arte e cultura.

Obedecendo à Resolução Nº 06, da Câmara de Educação Básica do Conselho Nacional de Educação, vinculado ao Ministério da Educação (Título I, Capítulo I, Art. 3º (inciso 4º) e Art. 5º; Capítulo II, Art. 6º; Título II, Capítulo I, Art.s 13º, 14º, 15º e 17º), a transversalidade e a integração de conteúdo serão trabalhadas de forma mais contundente nos componentes curriculares Projetos Interdisciplinares, que ocorre nos três anos do curso. O objetivo principal deste componente curricular é o desenvolvimento de projetos pelos alunos. Além disso, esse componente consiste em um espaço de aproximação do aluno com o eixo profissional no qual pretende ser futuramente inserido, além de uma integração com a formação geral.

De um lado, pretende oportunizar ao aluno um maior conhecimento da área de atuação do curso de formação. De outro, visa possibilitar um envolvimento maior do aluno em atividades práticas, tornando o processo de ensino/aprendizagem mais atrativo e um comprometimento profissional e com o bem comum e participação ativa na sociedade. A elaboração dos projetos permite ao aluno atuar de maneira ativa no processo de aprendizagem, desenvolvendo competências como pró-atividade, autonomia, criatividade, capacidade de trabalhar em grupo e capacidade de solucionar problemas. Além disso, o desenvolvimento dos projetos torna o processo de ensino aprendizagem mais prático e dinâmico, de maneira a facilitar a assimilação dos conteúdos.

Neste contexto, esse componente deve ser desenvolvido contemplando uma etapa inicial de palestras e/ou apresentações sobre o curso, como as possibilidades de atuação do profissional técnico; áreas de pesquisa e assuntos afins. Além destas palestras, devem ser apresentados métodos de estudo e orientações a respeito da gestão e acompanhamento dos projetos. A finalidade desta etapa é fornecer subsídios para o desenvolvimento posterior do projeto. Após a finalização desta etapa os alunos devem ser divididos em grupos para desenvolver um projeto que será apresentado em momento oportuno para a participação da comunidade acadêmica. Durante o percurso os alunos serão acompanhados por professo-
res, responsáveis diretos pelas orientações acerca da execução do projeto a ser apresentado, da estruturação e elaboração do cronograma geral de atividades. Além do projeto desenvolvido por cada grupo, os alunos também devem participar de forma ativa na elaboração e organização do evento de apresentação do projeto.

A avaliação do projeto será dividido em três momentos:

(i) Definição do escopo do projeto, do cronograma de atividades e da metodologia a ser utilizada, com o acompanhamento do(s) professor(es) orientador(es).

(ii) Apresentação de meios de publicidade e divulgação do projeto antes e durante o evento de apresentação; da planilha de custos, listagem de componentes e equipamentos, e layout do espaço necessário para exibição do projeto; assim como a entrega de um documento que formalize estas definições, com o aval do(s) orientador(es).

(iii) Apresentação do projeto finalizado no evento próprio para esse fim. Esta atividade será realizada por uma comissão formada para este propósito.

O percentual de cada avaliação e os requisitos mínimos para aprovação será discutido pela área de engenharia e definido pelo colegiado do curso antes do início de cada atividade do ano letivo corrente da realização dos projetos.

8.1.1. Matriz Curricular

Matriz Curricular
Curso Técnico em Eletrotécnica, Integrado.

<table>
<thead>
<tr>
<th>SÉRIE/MÓDULO</th>
<th>COD.</th>
<th>DISCIPLINA</th>
<th>CH</th>
<th>PRE-REQUISITO</th>
<th>CO-REQUISITO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FGIETRO.101</td>
<td>Língua Portuguesa e Literatura I</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.003</td>
<td>Língua Estrangeira Moderna - Inglês I</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SÉRIE/MÓDULO</td>
<td>COD.</td>
<td>DISCIPLINA</td>
<td>CH</td>
<td>PRÉ-REQUISITO</td>
<td>CO-REQUISITO</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---</td>
<td>----</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.004</td>
<td>Educação Física I</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.078</td>
<td>Redação I</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.095</td>
<td>Geografia I</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.096</td>
<td>História I</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.102</td>
<td>Estudos Filosóficos e Sociológicos I</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.069</td>
<td>Biologia I</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.103</td>
<td>Química I</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.075</td>
<td>Matemática I</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.104</td>
<td>Física Técnica I</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.105</td>
<td>Eletricidade Básica</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FGIETRO.106</td>
<td>Eletrotécnica I</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.107</td>
<td>Língua Portuguesa e Literatura II</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.018</td>
<td>Língua Estrangeira Moderna - Inglês II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.020</td>
<td>Educação Física II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.089</td>
<td>Redação II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.097</td>
<td>Geografia II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.098</td>
<td>História II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.108</td>
<td>Estudos Filosóficos e Sociológicos II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.022</td>
<td>Biologia II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.024</td>
<td>Química II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.021</td>
<td>Matemática II</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.109</td>
<td>Circuitos CA e Sistemas Trifásicos</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SÉRIE/MÓDULO</td>
<td>COD.</td>
<td>DISCIPLINA</td>
<td>CH</td>
<td>PRÉ-REQUISITO</td>
<td>CO-REQUISITO</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---</td>
<td>----</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.110</td>
<td>Laboratório de Circuitos CA e Sistemas Trifásicos</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.111</td>
<td>Eletrotécnica II</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.112</td>
<td>Eletrônica</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.113</td>
<td>Lab. Eletrônica</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.114</td>
<td>Física Técnica II</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.115</td>
<td>Instalações Elétricas Residenciais e Industriais</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FGIETRO.116</td>
<td>Laboratório de Instalações Elétricas Residenciais e Industriais</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1080</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.117</td>
<td>Língua Portuguesa e Literatura III</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.118</td>
<td>Língua Estrangeira Moderna - Inglês III</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.037</td>
<td>Educação Fisica III</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.034</td>
<td>Redação III</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.090</td>
<td>Geografia III</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.091</td>
<td>História III</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.119</td>
<td>Estudos Filosóficos e Sociológicos III</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.039</td>
<td>Biologia III</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.092</td>
<td>Química III</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.038</td>
<td>Matemática III</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.049</td>
<td>Máquinas Elétricas e Acionamentos Elétricos</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.046</td>
<td>Laboratório de Máquinas Elétricas e Acionamentos Elétricos</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.120</td>
<td>Física Técnica III</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIETRO.121</td>
<td>Instrumentação e Automação Industrial</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPONENTES CURRICULARES OBRIGATÓRIOS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projeto Interdisciplinar I</td>
<td>60</td>
</tr>
<tr>
<td>Projeto Interdisciplinar II</td>
<td>30</td>
</tr>
<tr>
<td>Projeto Interdisciplinar III</td>
<td>30</td>
</tr>
<tr>
<td>Artes I</td>
<td>15</td>
</tr>
<tr>
<td>Artes II</td>
<td>15</td>
</tr>
<tr>
<td>Artes III</td>
<td>15</td>
</tr>
<tr>
<td>Atividade complementar</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>230</td>
</tr>
</tbody>
</table>

Carga horária em disciplinas obrigatórias

<table>
<thead>
<tr>
<th>Carga horária em disciplinas obrigatórias</th>
<th>2970</th>
</tr>
</thead>
</table>

Carga horária em disciplinas optativa

<table>
<thead>
<tr>
<th>Componentes curriculares</th>
<th>230</th>
</tr>
</thead>
</table>

Carga horária total do curso

<table>
<thead>
<tr>
<th>Carga horária total do curso</th>
<th>3200</th>
</tr>
</thead>
</table>

DISCIPLINAS OPTATIVAS

<table>
<thead>
<tr>
<th>PERÍODO</th>
<th>COD.</th>
<th>DISCIPLINA</th>
<th>CH</th>
<th>PRÉ-REQUISITO</th>
<th>CO-REQUISITO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FGIADMI.092</td>
<td>Libras</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.1.2. Ementário

Disciplinas Obrigatórias
MINISTÉRIO DA EDUCAÇÃO
SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS
CAMPUS FORMIGA - Rua São Luiz Gonzaga, s/nº- São Luiz. Tel.: (37) 3322-8428
de.formiga@ifmg.edu.br

1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.075</th>
<th>Nome da disciplina: Matemática I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 120 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 120 horas</td>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Describer conjuntos, operar e resolver problemas com conjuntos. Operar e representar conjuntos numéricos e intervalos. Identificar cada função, analisar e construir gráficos, resolver problemas e obter funções inversas e compostas. Oportunizar ao aluno a trabalhar com números complexos, preparando-o para utilizar tal conceito em disciplinas técnicas.

Bibliografia básica:

Bibliografia complementar:

1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.096</th>
<th>Nome da disciplina: História I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 30 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 30 horas</td>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
A disciplina de História tem como objetivo o estudo e a análise crítica de diferentes sociedades ao longo do tempo. Além de uma discussão sobre os conceitos fundamentais da História, pretende-se, na disciplina de História I, apresentar os principais aspectos que caracterizaram a Antiguidade, a Idade Média problematizando-os a partir de suas continuidades e rupturas em relação ao presente. Busca-se, assim, estimular a reflexão crítica por meio da qual o
discente possa reconhecer suas experiências enquanto frutos históricos e estabelecer conexões e comparações com vivências e conhecimentos de outros sujeitos, em tempos, culturas e lugares distintos.

Bibliografia básica:

Bibliografia complementar:

1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.103</th>
<th>Nome da disciplina: Química I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 90 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 90 horas</td>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):

Ao final da série, o aluno deverá ser capaz de:

- Compreender o papel da ciência no processo de transformação da sociedade e o impacto da tecnologia sobre o meio ambiente, sobre a vida pessoal do cidadão e sobre o processo de produção.
- Despertar o interesse científico através da compreensão de que a ciência se desenvolve por acumulação e continuidade de conhecimentos a partir de métodos e procedimentos próprios.
- Compreender mais amplamente o mundo natural, bem como sua vida cotidiana, no que diz respeito a situações que envolvam a química.
- Incorporar terminologias e representações peculiares à química, como instrumentos de comunicação e como processo de constituição do conhecimento.
- Aplicar os princípios básicos de massas, moléculas, estrutura atômica, classificação periódica, ligações químicas e propriedades dos materiais, não só na resolução de exercícios, mas de situações e problemas concretos do seu cotidiano.

Bibliografia básica:

Bibliografia complementar:

1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.095</th>
<th>Nome da disciplina: Geografia I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 30 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 30 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Breve histórico da geografia como ciência; Os conceitos geográficos – território, lugar, paisagem, região, espaço geográfico; A produção cartográfica possibilitando a visualização do espaço produzido; A paisagem e os elementos naturais que a compõem: estrutura geológica, relevo, solo, clima, hidrografia, biomas e formações vegetais; Recursos disponíveis para o registro de problemas ambientais; Teledetecção: satélites a serviço da questão ambiental.

Objetivo(s):
Compreender o espaço geográfico como a materialidade cumulativa resultante da interação dos processos sociais e naturais, derivados da relação entre os homens sob a forma de sociedades e entre estas e a natureza. Tornar-se sujeito do processo ensino-aprendizagem para se descobrir convivendo em escala local, regional, nacional e global, um cidadão responsável com seu lugar mundo, através da construção de uma identidade.

Bibliografia básica:

Bibliografia complementar:

Biologia I

<table>
<thead>
<tr>
<th>Código: FGIETRO.069</th>
<th>Nome da disciplina: Biologia I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática: 60 horas</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Compreender o fenômeno vida desde sua origem como um conjunto de processos organizados e integrados, do nível molecular até a organização de células em tecidos, bem como os aspectos reprodutivos e embrionários dos seres vivos que permitem a manutenção das espécies e as formas de obtenção e liberação de energia pelos organismos.

Bibliografia básica:

Bibliografia complementar:

Educação Física I

<table>
<thead>
<tr>
<th>Código: FGIETRO.004</th>
<th>Nome da disciplina: Educação Física I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Prática</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática: 60 horas</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Compreender como as representações e práticas sociais da cultural corporal, se constituem e se transformam, bem como suas relações com os agentes sociais envolvidos em sua produção e organização.

Fruir e apreciar a pluralidade de práticas corporais sistematizadas compreendendo sua diversidade de sentidos e significados a partir dos contextos históricos e socioculturais

Bibliografia básica:
ZUCON, Otavio; BRAGA, Geslline Giovana. Introdução as culturas Populares no Brasil. Curitiba: Intersaberes, 2013. 182 p

Bibliografia complementar:

<table>
<thead>
<tr>
<th>Código: FGIETRO.102</th>
<th>Nome da disciplina: Estudos Filosóficos e Sociológicos I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Filosofia e Ciência. Lógica e argumentação. Racionalismo, Empirismo, Idealismo, Dialética, Positivismo, Feneomenologia e Hermenêutica.

Objetivo(s):
O objetivo desta disciplina é servir de introdução à filosofia e à metodologia das ciências, com foco na Sociologia e sua especificidade, analisando as diversas possibilidades epistemológicas que se apresentam na construção do conhecimento.

Bibliografia básica:

Bibliografia complementar:
1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.003</th>
<th>Nome da disciplina: Língua Estrangeira Moderna – Inglês I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Ementa:</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>Artigo; Substantivos - Plural e gênero; Pronomes Pessoais e Reflexivos; O Caso Possessivo; O verbo to be; O verbo haver; Adjetivos e Advérbios; Graus de Adjetivos e Advérbios; Demonstrativos (pronomes substantivos e adjetivos); Possessivos; Verbos - observações preliminares; Simple Presente - Present Progressive.</td>
<td></td>
</tr>
<tr>
<td>Objetivo(s):</td>
<td></td>
</tr>
<tr>
<td>Aprender aspectos básicos da gramática da língua Inglesa; desenvolver a habilidade de interpretar textos curtos em inglês; aplicar seus conhecimentos gramaticais e utilizá-los no dia a dia, assim também como seus conhecimentos culturais sobre a língua inglesa.</td>
<td></td>
</tr>
<tr>
<td>Bibliografia básica:</td>
<td></td>
</tr>
<tr>
<td>Bibliografia complementar:</td>
<td></td>
</tr>
</tbody>
</table>

1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.101</th>
<th>Nome da disciplina: Língua Portuguesa e Literatura I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 90 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:90 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Ementa:</td>
<td>Natureza: Obrigatória</td>
</tr>
</tbody>
</table>
rismo, Humanismo e Classicismo. A literatura no Brasil. O período colonial: Quinhentismo, Barroco, Arcadismo.

Objetivo(s):
Utilizar-se das linguagens como meio de expressão, informação e comunicação em situações intersubjetivas, que exijam graus de distanciamento e reflexão sobre os contextos e estatutos de interlocutores, e saber colocar-se como protagonista no processo de recepção/produução.

Observar o modo de funcionamento da língua portuguesa, elaborando reflexões sobre sua gramática...

Bibliografia básica:

Bibliografia complementar:

1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.078</th>
<th>Nome da disciplina: Redação I</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Carga horária total: 60 horas</th>
<th>Abordagem metodológica:</th>
<th>Natureza:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH teórica:60 horas</td>
<td>Teórica</td>
<td>Obrigatória</td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):

Ler criticamente, interpretar e produzir textos dos mais diferentes gêneros. Distinguir os diferentes tipos de textos, redigindo-os e analisando-os com clareza. Elaborar parágrafos com coesão e coerência a partir de um tópico-frasal.
Analisar, interpretar e aplicar recursos expressivos das linguagens, relacionando textos com seus contextos, mediatizando a natureza, função, organização, estrutura das manifestações, de acordo com as condições da produção e recepção. Confrontar opiniões e pontos de vista sobre as diferentes linguagens e suas manifestações específicas.

Bibliografia básica:

Bibliografia complementar:

<table>
<thead>
<tr>
<th>1º Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código: FGIETRO.104</td>
</tr>
<tr>
<td>Carga horária total: 90 horas</td>
</tr>
<tr>
<td>CH teórica: 90 horas</td>
</tr>
<tr>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Introdução à Física. Notação científica e algarismos significativos; cinemática escalar, estudo do movimento uniforme; estudo do movimento variável; movimento vertical no vácuo; estudos gráficos dos movimentos uniforme e variado; vetores; velocidade e aceleração vetorial; lançamento horizontal e oblíquo no vácuo; movimentos circulares; princípios fundamentais da dinâmica; forças de atrito; trabalho e energia; impulso e quantidade de movimento...

Objetivo(s):

Discussar resultados-chave de pesquisa em física para a sala de aula; oferecer um equilíbrio entre o raciocínio quantitativo e a compreensão dos conceitos, desenvolver, de forma sistemática as habilidades dos alunos na resolução de problemas; Fornecer ao aluno, uma apresentação clara e lógica dos conceitos de mecânica e princípios básicos da Física....

Bibliografia básica:

SANTA’ANA, Blaidi; MARTINI, Glorinha; REIS, Hugo Carneiro; SPINELLI, Walter. Conexões com a Física. 1. ed. São Paulo, Editora Moderna, 2011, volume 1

Bibliografia complementar:
1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.105</th>
<th>Nome da disciplina: Eletricidade Básica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 90 horas</td>
<td>Abordagem metodológica: Teórico-prática</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:30 horas</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Notaçao Científica e Algarismos Significativos; Introdução à Eletricidade (Segurança); Cargas Elétricas; Eletrização; Força Elétrica; Campo Elétrico, Potencial Elétrico; Corrente Elétrica; Materiais Elétricos (Condutores e Isolantes) e Leis de Ohm; Medidas Elétricas (Instrumentação); Circuitos Elétricos (Resistores, Geradores e Receptores); Associação de Resistores; Associação de Geradores; Leis de Kirchhoff.

Objetivo(s):
Discutir resultados-chave de pesquisa em física para a sala de aula; oferecer um equilíbrio entre o raciocínio quantitativo e a compreensão dos conceitos, desenvolver, de forma sistemática as habilidades dos alunos na resolução de problemas; Fornecer ao aluno, uma apresentação clara e lógica dos conceitos de mecânica e princípios básicos da Física.

Bibliografia básica:

Bibliografia complementar:
1º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.106</th>
<th>Nome da disciplina: Eletrotécnica I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Desenho CAD

Segurança no Trabalho

Riscos em eletricidade, isolamento de circuitos, trabalho em circuitos energizados, sinalização, ferramentas e equipamentos de proteção, Normatização e Legislação, Ergonomia, Mapas de riscos ambientais, Proteção Contra Incêndio, Acidentes de Trabalho, Primeiros Socorros.

Medidas Elétricas

Objetivo(s):

Desenvolver as técnicas fundamentais para a aprendizagem, interpretação e execução do desenho técnico em ambiente CAD, com vistas às aplicações em leitura e desenhos de peças e dispositivos mecânicos básicos.

Demonstrar aos alunos as bases dos conceitos básicos de segurança profissional na área da eletrotécnica.

Desenvolver a habilidade dos alunos de manipular os equipamentos de medição utilizados nos laboratórios com segurança.

Bibliografia básica:

Bibliografia complementar:

2º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.021</th>
<th>Nome da disciplina: Matemática II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 120 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 120 horas</td>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Oportunizar o aluno a:
Ser capaz de resolver problemas que envolvam relações trigonométricas em triângulos retângulos e triângulos quaisquer. Identificar figuras semelhantes e usar a semelhança e as relações métricas no triângulo retângulo para resolver problemas. Identificar funções trigonométricas, analisar e construir gráficos. Resolver sistemas de equações lineares. Operar com matrizes, calcular determinantes. Ser capaz de resolver problemas que envolvam o cálculo de áreas de figuras planas. Identificar elementos como apótema, raio, lado e diagonais em polígonos regulares, bem como resolver problemas que envolvam polígonos regulares. Resolver problemas que envolvem políedros: prismas e pirâmides. Ser capaz de compreender e resolver problemas que envolvam o princípio fundamental da contagem. Resolver problemas envolvendo permutações, arranjos simples, combinações simples e números binomiais. Entender princípios da probabilidade e resolver problemas que envolvam o cálculo de probabilidades.

Bibliografia básica:

Bibliografia complementar:

2º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.098</th>
<th>Nome da disciplina: História II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
A disciplina de História tem como objetivo o estudo e a análise crítica de diferentes sociedades ao longo do tempo. Além de uma discussão sobre os conceitos e práticas fundamentais da História, pretende-se, na disciplina de História II, apresentar os principais aspectos que caracterizaram diferentes sociedades no período moderno e contemporâneo, problematizando-as a partir de suas continuidades e rupturas em relação ao presente. Ademais, a disciplina busca também, apresentar o processo de formação do Brasil a partir do processo de colonização portuguesa, com destaque especial à história e à cultura dos povos indígenas e africanos, bem como analisar o processo de construção da cidadania no Brasil independente.

Bibliografia básica:

Bibliografia complementar:

- Incorporar terminologias e representações peculiares a química, como instrumentos de comunicação e como processo de constituição do conhecimento.
- Adquirir conhecimentos relativos à Físico-Química.

Bibliografia básica:

USBERCO, João; SALVADOR, Edgard. **Química**. São Paulo: Saraiva. v.1 e 2

Bibliografia complementar:

<table>
<thead>
<tr>
<th>2º Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código: FGIETRO.022</td>
</tr>
<tr>
<td>Carga horária total: 60 horas</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
</tr>
<tr>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):

Compreender os aspectos anatômicos, morfológicos e fisiológicos da espécie humana, a fim de que os alunos aprofundem o entendimento da estruturação e do funcionamento de seu corpo. Identificar e distinguir as características dos organismos que compõem os diversos grupos de seres vivos, bem como sua importância ecológica, econômica e médica.

Bibliografia básica:

Bibliografia complementar:

2º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.020</th>
<th>Nome da disciplina: Educação Física II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td></td>
</tr>
<tr>
<td>CH teórica:</td>
<td>CH prática: 60 horas</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Reconhecer-se como produtor, consumidor e fruidor da cultura corporal.
Utilizar a linguagem corporal, em suas variadas possibilidades, para expressar ideias, sentimentos e sensações.
Reconhecer a cultura corporal como possibilidade de compreender outras culturas e de reconhecer-se diante da alteridade, percebendo mecanismos de construção de identidades coletivas e individuais.
Compreender as relações entre prática de atividade física e saúde....

Bibliografia básica:

Bibliografia complementar:

2º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.108</th>
<th>Nome da disciplina: Estudos Filosóficos e Sociológicos II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Estudo da transformação do Estado e das relações entre as noções de Estado e de Direito. Conceitos básicos: Estado, poder, política, ideologia, Movimentos sociais; Direitos Humanos; cidadania..

Objetivo(s):
Permitir o aprendizado e compreensão de noções introdutórias de sociologia e filosofia política, assim como possibilitar a compreensão das mudanças no papel do Estado e a reflexão sobre as noções e associações entre Democracia e Direitos Humanos....

Bibliografia básica:

Bibliografia complementar:

<table>
<thead>
<tr>
<th>2º Ano</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Código: FGIETRO.018</td>
<td>Nome da disciplina: Língua Estrangeira Moderna – Inglês II</td>
</tr>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
O pretérito perfeito/imperfeito; Futuro do presente (simple future); O verbo ter; O pretérito perfeito composto (Present perfect); O pretérito mais-que-perfeito composto (Past Perfect); O futuro do presente composto (Future perfect); O subjuntivo e o imperativo; Verbos auxiliares especiais 1 (modal verbs 1);

Objetivo(s):
Aprender aspectos mais profundos da gramática da língua Inglesa; desenvolver a habilidade de interpretar textos mais extensos em inglês; aplicar seus conhecimentos gramaticais e utilizá-los no dia a dia, assim também como seus conhecimentos culturais sobre a língua inglesa; fazer uso do inglês instrumental para resolver questões de vestibular.....

Bibliografia básica:

Bibliografia complementar:

<table>
<thead>
<tr>
<th>2º Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código: FGIETRO.107</td>
</tr>
<tr>
<td>Carga horária total: 90 horas</td>
</tr>
<tr>
<td>CH teórica:90 horas</td>
</tr>
<tr>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Utilizar-se das linguagens como meio de expressão, informação e comunicação em situações intersubjetivas, que exijam graus de distanciamento e reflexão sobre os contextos e estatutos de interlocutores, e saber colocar-se como protagonista no processo de recepção/produção.

Observar o modo de funcionamento da língua portuguesa, elaborando reflexões sobre sua gramática.....

Bibliografia básica:

Bibliografia complementar:

<table>
<thead>
<tr>
<th>Código: FGIETRO.089</th>
<th>Nome da disciplina: Redação II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Ler criticamente, interpretar e produzir textos dos mais diferentes gêneros. Redigir diversos tipos de texto dissertativos com coesão e coerência. Analisar, interpretar e aplicar recursos expressivos das linguagens, relacionando textos com seus contextos, mediante a natureza, função, organização, estrutura das manifestações, de acordo com as condições da produção e recepção. Confrontar opiniões e pontos de vista sobre as diferentes linguagens e suas manifestações específicas.

Bibliografia básica:

Bibliografia complementar:

<table>
<thead>
<tr>
<th>Código: FGIETRO.109</th>
<th>Nome da disciplina: Circuitos CA e Trifásicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 30 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:30 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Sistemas trifásicos balanceados: configuração delta e estrela para geradores e cargas, sistemas estrela-estrela, estrela-delta, delta-estrela, delta-delta. Potência trifásica. Noções básicas de sistemas desbalanceados.

Objetivo(s):
Capacitar o aluno a analisar circuitos elétricos de correntes e tensões alternadas monofásicas e trifásicas

Bibliografia básica:

Bibliografia complementar:

| 2º Ano |
Código: FGIETRO.110	Nome da disciplina: Laboratório de Circuitos CA e Trifásicos	
Carga horária total: 30 horas	**Abordagem metodológica:** Prática	**Natureza:** Obrigatória
CH teórica:	**CH prática:**30 horas	

Ementa:
Práticas associadas à análise de circuitos em corrente alternada e sistemas trifásicos. Métodos de medição em circuitos monofásicos e trifásicos.

Objetivo(s):
Capacitar o aluno a trabalhar com circuitos elétricos de correntes e tensões alternadas monofásicas e trifásicas com segurança, seguindo as normas e segurança de trabalho em eletricidade.

Bibliografia básica:
Bibliografia complementar:

2º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.111</th>
<th>Nome da disciplina: Eletrotécnica II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 30 horas</td>
<td>Abordagem metodológica: Prática</td>
</tr>
<tr>
<td>CH teórica:</td>
<td>CH prática: 30 horas</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):

Capacitar o aluno a reconhecer problemas e propor soluções de melhorias no uso e na qualidade da energia elétrica. Identificar e aplicar instrumentos de medição, com a finalidade de verificação da eficiência e da qualidade energética.

Bibliografia básica:

Bibliografia complementar:

MINISTÉRIO DA EDUCAÇÃO
SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS
CAMPUS FORMIGA - Rua São Luiz Gonzaga, s/nº. - São Luiz. Tel.: (37) 3322-8428
de.formiga@ifmg.edu.br

<table>
<thead>
<tr>
<th>2º Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código: FGIETRO.112</td>
</tr>
<tr>
<td>Carga horária total: 60 horas</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
</tr>
<tr>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Capacitar o aluno a trabalhar com dispositivos eletrônicos digitais e analógicos.

Bibliografia básica:

Bibliografia complementar:

<table>
<thead>
<tr>
<th>2º Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código: FGIETRO.113</td>
</tr>
<tr>
<td>Carga horária total: 60 horas</td>
</tr>
<tr>
<td>CH teórica:</td>
</tr>
<tr>
<td>Abordagem metodológica: Prática</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Capacitar o aluno a trabalhar com dispositivos eletrônicos digitais e analógicos.

Bibliografia básica:
2º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.114</th>
<th>Nome da disciplina: Física Técnica II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Ondas; Ondas Periódicas; Efeitos Ondulatórios; Ondas Sonoras.; Introdução a Termologia; Termometria; Dilatação Térmica dos Sólidos e Líquidos; Calorimetria e Mudanças de Fase; Propagação de Calor; Estudo dos Gases; As Leis da Termodinâmica

Objetivo(s):

Oferecer uma compreensão dos conceitos, desenvolver, de forma sistemática as habilidades dos alunos na resolução de problemas da física térmica e do movimento ondulatório; desenvolver no aluno aptidão para compreensão dos conceitos de termodinâmica, física ondulatória e ondas sonoras..

Bibliografia básica:

Bibliografia complementar:

2º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.115</th>
<th>Nome da disciplina: Instalações elétricas residenciais e industriais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Projeto e dimensionamento de iluminação, condutores elétricos, eletrodutos, proteção (sobrecorrente, corrente de fuga e surtos), quadros de distribuição de circuitos. Procedimentos para dimensionamento de instalações elétricas baseados nas normas vigentes da Associação Brasileira de Normas Técnicas (ABNT) e nas recomendações de concessionárias de energia elétrica.

Aplicação de softwares especializados em projetos elétricos.

Objetivo(s):

Capacitar o aluno a dimensionar e projetar instalações elétricas conforme as normas vigentes...

Bibliografia básica:

Bibliografia complementar:

resistência de aterramento, medição de resistência de isolamento e montagem de quadro de distribuição.

Objetivo(s):
Capacitar o aluno a dimensionar e projetar instalações elétricas conforme as normas vigentes.

Bibliografia básica:

Bibliografia complementar:

3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.038</th>
<th>Nome da disciplina: Matemática III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 90 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 90 horas</td>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Oportunizar o aluno a:
Trabalhar com problemas que envolvem situações financeiras de porcentagens, juros simples e compostos. Interpretar e construir gráficos que envolvem conhecimentos estatísticos, resolver problemas que envolvam medidas de tendência central. Calcular medidas de área e volume, e resolver problemas que envolvam os sólidos: cilindro, cone e esfera. Ser capaz de analisar e resolver problemas que envolvam, pontos retas, circunferências e secções cónicas. Operar com polinômios e conhecer as relações e teoremas da álgebra.

Bibliografia básica:

Bibliografia complementar:

3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.091</th>
<th>Nome da disciplina: História III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td></td>
<td>Natureza: Obrigatória</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
A disciplina de História tem como objetivo o estudo e a análise crítica de diferentes sociedades ao longo do tempo. Além de uma discussão sobre os conceitos e práticas fundamentais da História, pretende-se, na disciplina de História III, apresentar os principais aspectos que caracterizaram diferentes sociedades entre fim do século XIX e o início do século XXI, problematizando-as a partir de suas continuidades e rupturas em relação ao presente. Busca-se estimular a reflexão crítica por meio da qual o discente possa reconhecer suas experiências enquanto frutos históricos e estabelecer conexões e comparações com vivências e conhecimentos de outros sujeitos, em tempos, culturas e lugares distintos. A disciplina de História III pretende, ademais, discutir aspectos da sociedade contemporânea fundamentais para o exercício pleno da cidadania.

Bibliografia básica:

Bibliografia complementar:

3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.092</th>
<th>Nome da disciplina: Química III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):

Ao final da série, o aluno deverá ser capaz de:

- Compreender mais amplamente o mundo natural, bem como sua vida cotidiana, no que diz respeito a situações que envolvam a química, particularmente a química orgânica.

- Compreender o importante papel da química orgânica na elucidação dos processos que ocorrem com os seres vivos.

- Compreender a contribuição da química orgânica para o desenvolvimento da tecnologia, principalmente na produção de plásticos, detergentes, polímeros, medicamentos, dentre outros.

- Utilizar terminologias (nomenclaturas) e representações peculiares à química orgânica (fórmulas estruturais planas e espaciais), como instrumentos de comunicação.

- Compreender que as substâncias químicas são identificadas a partir de propriedades físicas e químicas mensuráveis.

- Aplicar conhecimentos de mecanismos de reação no planejamento de sínteses orgânicas simples e na previsão de produtos de reações.

Bibliografia básica:

Bibliografia complementar:

<table>
<thead>
<tr>
<th>Código: FGIETRO.090</th>
<th>Nome da disciplina: Geografia III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Redes, técnicas, fluxos; O fim da Guerra Fria e a expansão do capitalismo; A ONU como poder decisório em questão; Desenvolvimento e subdesenvolvimento: distâncias que aumentam; Blocos econômicos; Interesses políticos; Nacionalismos e separatismos; A América em busca de novos caminhos; Tensões, conflitos, guerras; Oriente Médio; A África: seus problemas e suas soluções...

Objetivo(s):
Compreender o espaço geográfico como a materialidade cumulativa resultante da interação dos processos sociais e naturais, derivados da relação entre os homens sob a forma de sociedades e entre estas e a natureza. Tornar-se sujeito do processo ensino aprendizagem para se descobrir convivendo em escala local, regional, nacional e global, um cidadão responsável com seu lugar mundo, através da construção de uma identidade.

Bibliografia básica:

Bibliografia complementar:
Código: FGIETRO.039 Nome da disciplina: Biologia III

<table>
<thead>
<tr>
<th>Carga horária total: 60 horas</th>
<th>Abordagem metodológica: Teórica</th>
<th>Natureza: Obrigatória</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH teórica:60 horas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):
Ampliar o conhecimento sobre as variações do material genético e as bases da herança genética atuantes na transmissão de características em uma população biológica, para que, a partir disso, os alunos possam compreender como se dá o processo de evolução dos organismos e ter uma visão crítica sobre o sistema de classificação biológica. Compreender a estruturação e os processos que ocorrem no ambiente, de forma a possibilitar a compreensão de como os organismos interagem entre si e com o meio no qual ocorrem...

Bibliografia básica:

Bibliografia complementar:

Código: FGIETRO.037 Nome da disciplina: Educação Física III

<table>
<thead>
<tr>
<th>Carga horária total: 60 horas</th>
<th>Abordagem metodológica: Teórica</th>
<th>Natureza: Obrigatória</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH teórica:60 horas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Representações sociais de corpo e estética. Esportes de Aventura. Esportes coletivos e individuais. Lazer e Educação Física. Socorros Urgentes. Autonomia e práticas corporais. Corpo e Mídias. Práticas corporais introspectivas...

Objetivo(s):

63
Usar as práticas corporais sistematizadas de forma proficiente e autônoma.

Reconhecer a influência da mídia na construção de padrões estéticos e de comportamento, bem como na mercantilização das práticas corporais.

Usar práticas corporais sistematizadas como possibilidade de fruir a natureza, percebendo-se parte integrante do todo e também responsável pela preservação ambiental.

Interferir de forma intencional e autônoma na dinâmica de produção e organização de práticas corporais de lazer em nível local, reconhecendo-se como produtor de cultura..

Bibliografia básica:

ZUCON, Otavio; BRAGA, Geslline Giovana. *Introdução as Culturas Populares no Brasil*. Curitiba: Intersaberes, 2013. 182 p...

Bibliografia complementar:

3º Ano

Código: FGIE190.119
Nome da disciplina: Estudos Filosóficos e Sociológicos III

<table>
<thead>
<tr>
<th>CH teórica: 30 horas</th>
<th>CH prática:</th>
<th>Abordagem metodológica:</th>
<th>Natureza:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH prática:</td>
<td>Teórica</td>
<td>Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

Ética e Moral. Trabalho e estratificação social. Globalização e desenvolvimento. Introdução a sociologia contemporânea..

Objetivo(s):

Capacitar os estudantes no que há de mais significativo na sociologia contemporânea, assim como nas reflexões sobre o mundo do trabalho no contexto da globalização e suas implicações éticas...

Bibliografia básica:

COSTA, C. *Sociologia*: introdução a ciência da sociedade. 3.ed. São Paulo: Moderna, 2005

Bibliografia complementar:
3º Ano

Código: FGIETRO.118

Nome da disciplina: Língua Estrangeira Moderna – Inglês III

<table>
<thead>
<tr>
<th>Carga horária total: 60 horas</th>
<th>Abordagem metodológica: Teórica</th>
<th>Natureza: Obrigatória</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Verbos auxiliares especiais 2 (Modal verbs 2); As orações condicionais (if clauses); A voz passiva (The passive voice); Gerúndio e infinitivo; Perguntas no final da frase (question tag); Respostas breves e perguntas na forma negativa (Short answers and negative questions); Os interrogativos (question words); Pronomes relativos (relative pronouns); Pronomes substantivos e adjetivos (indefinidos); As conjunções; O discurso indireto (Reported Speech).

Objetivo(s):
Aprender, por meio do inglês instrumental, técnicas para interpretar textos em inglês; aumentar o vocabulário do discente, com oficinas de tradução; preparar o aluno para provas de vestibulares e concursos...

Bibliografia básica:

Bibliografia complementar:
Carga horária total: 90 horas

| CH teórica: 90 horas | Abordagem metodológica: Teórica | Natureza: Obrigatória |

Ementa:

Objetivo(s):
Utilizar-se das linguagens como meio de expressão, informação e comunicação em situações intersubjetivas, que exijam graus de distanciamento e reflexão sobre os contextos e estatutos de interlocutores, e saber colocar-se como protagonista no processo de recepção/produção. Observar o modo de funcionamento da língua portuguesa, elaboorando reflexões sobre sua gramática...

Bibliografia básica:

Bibliografia complementar:

3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.034</th>
<th>Nome da disciplina: Redação III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica:</td>
</tr>
<tr>
<td></td>
<td>Natureza:</td>
</tr>
</tbody>
</table>
Ementa:
Gêneros textuais narrativos: conto psicológico, entrevista dentre outros. Gêneros textuais expositivos e argumentativos: seminário, artigo de opinião, dentre outros. A redação no Enem, em vestibulares e concursos

Objetivo(s):
Ler criticamente, interpretar e produzir textos dos mais diferentes gêneros. Analisar, interpretar e aplicar recursos expressivos das linguagens, relacionando textos com seus contextos, mediante a natureza, função, organização, estrutura das manifestações, de acordo com as condições da produção e recepção. Confrontar opiniões e pontos de vista sobre as diferentes linguagens e suas manifestações específicas. Redigir diversos tipos de texto dissertativos com coesão e coerência, evidenciando-se os modelos cobrados em concursos e vestibulares.....

Bibliografia básica:

Bibliografia complementar:
ISBN 8526217070.
OLIVEIRA, Elisabeth Brait Rodrigues de; NEGRINI, José Luiz da Costa Aguiar; LOURENÇO, Nina Rosa da Pe-

3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.049</th>
<th>Nome da disciplina: Máquinas Elétricas e Acionamentos Elétricos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Circuitos magnéticos e transformadores
Circuitos magnéticos série, paralelo, com entreferro e com duas fontes e aplicações (relés, campainha, eletroimã, etc.). Transformadores monofásicos e trifásicos: princípio de funcionamento, aspectos construtivos, circuito elétrico equivalente, ensaios à vazio e de curto circuito, determinação do rendimento e regulação de tensão dos transformadores. Autotransformadores. Transformadores de medição (TC’s e TP’s).

Máquinas de corrente contínua e alternada (síncrona e assíncrona)
Princípio de funcionamentos e aspectos construtivos. Operação como motor e como gerador. Tipos de ligações e principais curvas características. Aplicações.
Acionamentos

Dispositivos de acionamento, comando e proteção dos motores elétricos. Análise dos circuitos de comando e força dos métodos de partida convencionais (direta, estrela-triângulo, chave compensadora, soft-starter, inversor de frequência). Formas de controle de velocidade e de torque em máquinas elétricas.

Objetivo(s):
Ao final da disciplina os alunos serão capazes de operar e entender o funcionamento dos dispositivos conversores de energia, tais como: relés eletromecânicos, transformadores, máquinas de corrente contínua e máquinas de corrente alternada. Além disso, os alunos terão conhecimento a respeito dos dispositivos utilizados no acionamento de tais conversores (fusíveis, relés, contadores, disjuntores, temporizadores, etc.) e das técnicas de controle de velocidade e partida (inversor de frequência, chave Soft-Starter, chave estrela-triângulo, etc).

Bibliografia básica:

Bibliografia complementar:

Bibliografia complementar:

3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.120</th>
<th>Nome da disciplina: Física Técnica III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica:60 horas</td>
<td>CH prática:</td>
</tr>
<tr>
<td>Natureza: Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Introdução à Óptica Geométrica; Reflexão da luz, Espelhos planos; Espelhos Esféricos; Refração luminosa; Lentes Esféricas Delgadas; Instrumentos Ópticos; Introdução à Física Moderna.

Objetivo(s):
Oferecer uma compreensão dos conceitos, desenvolver, de forma sistemática as habilidades dos alunos na resolução de problemas de óptica geométrica e desenvolver no aluno aptidão para compreensão dos conceitos de óptica, física moderna e princípios de física quântica e nuclear

Bibliografia básica:

Bibliografia complementar:
3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.121</th>
<th>Nome da disciplina: Instrumentação e Automação Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 30 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 30 horas</td>
<td>CH prática:</td>
</tr>
</tbody>
</table>

Ementa:

Objetivo(s):

Bibliografia básica:

Bibliografia complementar:

Objetivo(s):
Analisar fluxogramas de processos e instrumentação (P&I). Conhecer os princípios básicos de instrumentação industrial (medicação de pressão, vazão, temperatura e nível). Conhecer os princípios de projeto, aplicação da lógica de contato de relés e sua implementação equivalente em um ambiente com Controlador Lógico Programável – CLP. Familiarizar com a programação de Controlador Lógico Programável – CLP, IHM e sistemas supervisórios. Implementar soluções de acionamentos elétricos, pneumáticos/eletropneumáticos e hidráulicos/eletro-hidráulicos

Bibliografia básica:

Bibliografia complementar:

3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.123</th>
<th>Nome da disciplina: Sistemas elétricos de potência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 60 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 60 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Organização do setor elétrico
• Sistema interligado e sistema isolado;
• Geração hidroelétrica, termoelétrica e eólica;
• Componentes da linha de transmissão;
• Linhas de transmissão em corrente contínua e corrente alternada;
• Aspectos básicos de projetos de LT;
• Aplicação da eficiência energética às LT;
• Níveis de tensão da distribuição;
• Tipos de redes de distribuição;
• Tipos de ligação nas redes de distribuição;
• Principais componentes da rede de distribuição aérea;
• Aplicação da eficiência energética na distribuição.
Subestação
• Subestação de energia;
Equipamentos: ramal de entrada, para-raios, chaves, transformadores, sistema de proteção da subestação, fusíveis, transformadores para instrumentos, relés, cabos isolados para média tensão.

Legislação da ANEEL
- Agência Nacional de Energia Elétrica-ANEEL;
- Resolução 414/2010: Classificação da unidade consumidora, início do fornecimento de energia elétrica, aspectos comerciais;
- Legislação sobre o fator de potência;
- Prodist.

Normas
- NBR5410, NBR 14039, NBR 5419;
- Normas de padrão de entrada de energia;
- Norma técnica de gestão de energia;
- Normas regulamentadoras do Ministério do Trabalho e Emprego: dados históricos, normas regulamentadoras;
- Norma ambiental.

Objetivo(s):
Demonstrar aos alunos as bases dos conceitos de geração, transmissão e distribuição de energia elétrica. Noções básicas da utilização de equipamentos que fazem parte do sistema elétrico de potência.

Bibliografia básica:

Bibliografia complementar:

3º Ano

<table>
<thead>
<tr>
<th>Código: FGIETRO.124</th>
<th>Nome da disciplina: Sistemas Embarcados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga horária total: 30 horas</td>
<td>Abordagem metodológica: Teórica</td>
</tr>
<tr>
<td>CH teórica: 30 horas</td>
<td>Natureza: Obrigatória</td>
</tr>
<tr>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:
Algoritmos (fundamentos); Estrutura de dados (tipos e arranjos); Estruturas de controle (sequencial, condicional e repetição); Modularização de códigos (funções e parâmetros). Atividades práticas e pequenos projetos tratando dos princípios básicos dos Microcontroladores da família Arduino, assim como do seu ambiente de programação.

Objetivo(s):
Capacitar o aluno a trabalhar em pequenos projetos envolvendo dispositivos microcontroladores

Bibliografia básica:

Bibliografia complementar:

Disciplinas Optativas

<table>
<thead>
<tr>
<th>Código: FGIADMI.092</th>
<th>Nome da disciplina: Libras</th>
<th>Natureza: Optativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidade horária total: 30 horas</td>
<td>Abordagem metodológica: Teórica</td>
<td></td>
</tr>
<tr>
<td>CH teórica: 30 horas</td>
<td>CH prática:</td>
<td></td>
</tr>
</tbody>
</table>

Ementa:

A Libras e os mitos que a envolvem; Cultura Surda; Noções básicas da Libras: Alfabeto manual; Números; Sinal-Nome; o tempo; Vocabulário; Aspectos linguísticos da Libras: fonologia, morfologia e sintaxe; Iconicidade e arbitrariedade; Aspectos sociolinguísticos: As variações regionais; Aquisição e desenvolvimento de habilidades expressivas e receptivas em Libras; Prática em contextos comunicativos.

Objetivo(s):

Identificar os mitos que envolvem a Libras; Conhecer a Cultura Surda; Conhecer o vocabulário básico da Libras; Analisar os aspectos linguísticos e sociolinguísticos da Libras; Analisar a estrutura gramatical da Libras; Desenvolver competências básicas de comunicação e praticar o uso da Libras em contextos comunicativos diversos.

Bibliografia básica:

Bibliografia complementar:
8.1.3. Critérios de aproveitamento

8.1.3.1. Aproveitamento de estudos

Para fins de dispensa de disciplinas, poderá ser concedido ao discente o aproveitamento de estudos nas disciplinas cursadas com aprovação em cursos do mesmo nível de ensino no IFMG ou em outras instituições, exceto para as disciplinas cursadas no Ensino Médio regular. O discente interessado em requerer o aproveitamento de estudos deverá seguir os prazos previstos no calendário acadêmico do campus.

Para fins de análise de aproveitamento de estudos será exigida a compatibilidade mínima de 75% (setenta e cinco por cento) da carga horária, resguardando o cumprimento da carga horária total estabelecida para o curso na legislação vigente e compatibilidade do conteúdo programático, mediante parecer do Coordenador de Curso e um docente da área.

O aproveitamento de estudos estará sujeito ao limite máximo de carga horária estabelecido no Regulamento de Ensino dos Cursos de Educação Profissional Técnica de Nível Médio do IFMG.

O aluno poderá também solicitar o aproveitamento das atividades curriculares realizadas em programas de mobilidade acadêmica nacional e internacional, conforme regulamentação própria.

8.1.3.2. Aproveitamento de conhecimentos e experiências anteriores

Para fins de dispensa de disciplinas, poderá ser concedido ao discente o aproveitamento de conhecimentos adquiridos em experiências anteriores, formais ou informais,
desde que estejam diretamente relacionados com o perfil profissional de conclusão da respectiva qualificação ou habilitação profissional. O discente interessado em requerer o aproveitamento de conhecimentos e experiências anteriores deverá seguir os prazos previstos no calendário acadêmico do campus.

Para fins de análise de conhecimentos e experiências anteriores, a Coordenação do Curso indicará docente ou banca examinadora, que deverá aferir competências e habilidades do discente em determinada disciplina por meio de instrumentos de avaliação específicos. O docente ou a banca examinadora deverá estabelecer os conteúdos a serem abordados, as referências bibliográficas, as competências e habilidades a serem avaliadas, tomando como referência o Projeto Pedagógico do curso, definir os instrumentos de avaliação e sua duração, além de elaborar, aplicar e corrigir as avaliações.

Não será concedido aproveitamento de conhecimentos e experiências anteriores para disciplinas nas quais o discente tenha sido reprovado, a menos que o discente já tenha integralizado, no semestre corrente, 80% (oitenta por cento) ou mais de carga horária total do curso.

A(s) avaliação(ões) proposta(s) pelo docente ou pela banca examinadora terá(ão) valor igual à pontuação do período letivo e será considerado aprovevado o discente que obter rendimento igual ou superior a 60% (sessenta por cento) do tal da pontuação, sendo dispensado de cursar a disciplina. A dispensa de disciplinas por aproveitamento de conhecimentos e experiências anteriores estará sujeito ao limite máximo de carga horária estabelecido no Regulamento de Ensino dos Cursos de Educação Profissional Técnica de Nível Médio do IFMG.

8.1.4. Orientações metodológicas

A metodologia de ensino envolve o conjunto de ações que organizam e desenvolvem as atividades didático-pedagógicas que promoverão o desenvolvimento de habilidades
e conhecimentos por parte do discente. Nesse sentido, o Curso Técnico em Eletrotécnica adotará os seguintes princípios norteadores:

- Adotar uma atitude interdisciplinar nas práticas educativas, reconhecendo que o aprendizado requer a mobilização de conhecimentos desenvolvidos em mais de uma disciplina;
- Desenvolver um trabalho integrado entre professores, de modo a fomentar a interdisciplinaridade;
- Tratar conteúdos lecionados como recursos a serem utilizados em situações concretas;
- Desenvolver projetos em equipes para integração entre professores e alunos;
- Diversidade de estratégias didáticas, tais como seminários, projetos em grupo, debates, atividades individuais e atividades práticas, para avaliação de discentes;
- Utilização de recursos tecnológicos para subsidiar as atividades pedagógicas;
- Valorização de conhecimentos prévios do discente;
- Respeito à cultura dos discentes.

Os princípios supracitados refletem diferentes metodologias desenvolvidas ao longo do tempo, como o aprendizado por meio de projetos; a aprendizagem por simulação e o aprendizado baseado em problemas.

A metodologia baseada em projetos favorece o trabalho educacional por meio de iniciativas em que o discente possa articular informações sobre a realidade e sobre diferentes áreas de conhecimento, de modo a buscar soluções para problemas concretos. Portanto, a partir dessa metodologia, abre-se a possibilidade para incorporação da interdisciplinaridade e para que o aluno seja inserido como um sujeito ativo no processo de ensino-aprendizagem (HERNÁNDEZ; VENTURA, 1998).

O aprendizado por simulação visa aprimorar as relações entre teoria e prática, buscando estreitar os laços entre os conteúdos das disciplinas e a prática organizacional.
Adicionalmente, tal método apresenta a vantagem de proporcionar ao discente, dentro do espaço escolar, uma aproximação entre teoria e prática (KNABBEN; FERRARI 2012).

Por fim, a partir do aprendizado baseado em problemas (ABP), busca-se estimular o estudante a enfrentar problemas e solucioná-los a partir de uma base de conhecimento flexível e integrada. Por meio da ABP, o centro do processo educativo está no estudante. Este é estimulado a construir ativamente a própria aprendizagem, articulando conhecimentos prévios com os demais estudantes para a solução de problemas selecionados para estudo. Neste processo, o desenvolvimento do raciocínio crítico, de habilidades de comunicação e do entendimento da necessidade de aprender torna-se centrais e contribuem para uma formação interdisciplinar orientada para a articulação entre teoria e prática (GOMES et al. 2009).

O professor deverá definir que recursos e métodos são mais adequados aos conteúdos que ministra. Assim, a escolha do método dependerá do conteúdo específico e dos objetivos a serem alcançados em cada disciplina, sendo a postura do professor a de mediador e a de provocador, tornando, assim, o aluno autônomo, sujeito de sua aprendizagem.

A rearticulação curricular entre o ensino médio e a educação profissional de nível técnico busca a formação geral do estudante, atribuindo-lhe capacidades de autonomia intelectual e pensamento crítico, bem como o desenvolvimento de aptidões para a vida social e efetivo acesso ao setor produtivo.

As disciplinas da área propedeutica estarão em consonância com as disciplinas da área técnica. As considerações e diretrizes presentes neste projeto pretendem fornecer uma formação integral. Tendo em vista a complexidade da realidade contemporânea, esse objetivo só pode ser alcançado por meio de uma ênfase na multi-(inter)disciplinariedade, com a adoção de metodologias que propiciem o desenvolvimento de trabalhos em grupos de diferentes áreas do conhecimento.
Neste sentido, o projeto pedagógico do curso visa uma ação planejada e combinada entre os conteúdos do Ensino Médio e do Ensino Profissionalizante por meio de adoção de estratégias integralizadoras dos planos de cursos das disciplinas sobre as perspectivas de métodos de ensino e avaliação de conteúdo, possibilitando a associação de conteúdos e a criação de uma visão holística sobre tópicos da Eletrotécnica nas organizações.

8.1.5. Prática profissional

Realização de minicursos práticos e palestras que possibilitem ao aluno contato com profissionais do mercado e obter conhecimentos complementares sobre equipamentos elétricos.

Implementação do programa de iniciação científica júnior, possibilitando aos alunos a integração efetiva em atividades de pesquisa desenvolvidas pelos professores do curso.

O IFMG Campus Formiga desenvolve seus cursos pautados na educação empreendedora, cujo objetivo é promover a inovação e a construção de uma sociedade amparada pela justiça, pela ética e pela sustentabilidade.

Dentro deste contexto, foi criado em 2009, o Núcleo de Inovação Tecnológica – NIT/IFMG. Surgiu da necessidade de estimular a potencialidade da instituição na área tecnológica, bem como atender a Lei de Inovação (Lei 10.973, de 02 de dezembro de 2004). O NIT – IFMG encontra-se vinculado à Pró-Reitoria de Pesquisa, Inovação e Pós-Graduação (PRPPG) e, sob a Coordenação de Inovação Tecnológica, é o órgão responsável pela gestão da política de inovação tecnológica e de proteção à propriedade intelectual nos diversos campi do Instituto, no intuito de incentivar, proteger e registrar novas tecnologias desenvolvidas pelos pesquisadores. A principal missão do NIT – IFMG é incentivar a inovação tecnológica no Instituto através do apoio aos pesquisadores e acompanhamento das ações relacionadas à propriedade intelectual, contribuindo, assim, para o desenvolvimento socioeconômico e tecnológico do País.
A fim de se promover a inovação tecnológica, o IFMG – Campus Formiga, em conjunto com a Secretaria de Pesquisa e Extensão do Campus, promove workshops e palestras com pessoas e empresas que se destacaram dentro do contexto de inovação tecnológica.

Uma grande estrutura de fomento à inovação presente no campus Formiga é o Polo de Inovação do Instituto Federal de Minas Gerais (IFMG). Este é um ente organizacional conforme definido pela Portaria 19/2015 do Ministério da Educação contando com uma coordenadoria de gestão e prospecção de projetos de PD&I onde o aluno pode desenvolver projetos através do polo. O Polo de Inovação Minas Gerais conta com um qualificado e multidisciplinar corpo de docentes/pesquisadores, composto por cientistas da computação, engenheiros, físicos, administradores entre outros. Tendo como foco o desenvolvimento de softwares e sistemas, os pesquisadores contam com laboratórios de computação científica equipados com equipamentos e softwares de ponta para o desenvolvimento dos projetos de PD&I, além do Laboratório de Sistemas Automotivos. A experiência na construção e execução de projetos via parceria com uma grande empresa e o corpo multidisciplinar qualificado de docentes/pesquisadores produziu o ambiente necessário para a aprovação do Polo de Inovação Minas Gerais no âmbito da chamada pública 02/2014 da EMBRAPII, com área de atuação em Sistemas Automotivos Inteligentes.

No segundo ano do curso, os alunos do Curso Técnico em Eletrotécnica desenvolvem atividades cujo objetivo é promover a conscientização para preservação e sustentabilidade do município e do planeta. Para isso é trabalhado o tema da utilização racional e eficiente da energia elétrica nas disciplinas Eletrotécnica II, Instalações Elétricas Residenciais e Industriais e Sistemas Elétricos de Potência que englobarão conceitos de Geração de Energia Elétrica, Eficiência Energética e Aterramento Elétrico.

As estratégias de Cooperativismo estão ligadas à Secretaria de Pesquisa e Extensão do Campus Formiga por meio de palestras e eventos. Adicionalmente, a partir do Programa Institucional de Bolsas de Extensão Júnior, pretende-se fornecer auxílio a estudantes para o desenvolvimento de iniciativas focadas na promoção do cooperativismo e do desen-
volvimento sustentável na região. Os referidos assuntos serão ainda contemplados de modo transversal ao longo das demais disciplinas.

A partir dessas estratégias, espera-se que questões relacionadas ao desenvolvimento sustentável e ao cooperativismo possam ser integradas a disciplinas e assuntos relacionados ao desenvolvimento de negócios e de organizações.

Os projetos de extensão e de pesquisa aplicada são desenvolvidos com o objetivo de possibilitar a inserção dos estudantes na realidade local e regional, buscando sua formação profissional e humanística. De modo específico, as seguintes estratégias serão adotadas para fomentar atividades de extensão e pesquisa:

- **Estágio:** por meio das atividades de estágio, cria-se a oportunidade para que os alunos e professores levem às organizações os conhecimentos adquiridos ao longo das disciplinas e das atividades de pesquisa conduzidas pelos docentes do curso.
- **Projetos de Iniciação Científica:** visam inserir os alunos em atividades de pesquisa que proporcionem o alinhamento com a teoria desenvolvida em sala de aula relacionados à eficiência energética e desenvolvimento regional. Projetos de Extensão: buscam promover atividades que favoreçam o contato entre discentes e comunidade externa, priorizando a região de inserção do campus, atendendo as demandas sociais emergentes.

As seguintes estratégias serão conduzidas para promover a integração do curso com o setor produtivo local e regional:

- **Realização de feiras abertas à comunidade, para exposição de resultados de pesquisas;**
- **Promoção de reuniões entre o corpo docente e representantes de empresas locais, de modo a identificar demandas de mão-de-obra e desafios que possam ser objeto de pesquisa e extensão;**
- **Convite a representantes de empresas empreendedoras da região para ministração de palestras e participação em eventos;**
Visitas às organizações de Formiga e região objetivando a prospecção de vagas para realização de estágios – tanto curricular quanto extracurricular;

1. Apresentação de resultados de trabalhos de pesquisas em eventos e congressos.

8.1.6. Estágio supervisionado

Como forma de inserir o aluno no mundo do trabalho e propiciar uma vivência mais consistente na área, o mesmo pode realizar a atividade de estágio supervisionado.

A partir do desenvolvimento de atividades de estágio, buscar-se-á a integração entre alunos, professores e empresas, criando um ambiente em que os alunos possam aplicar em organizações, de modo integrado, conhecimentos passados nas diferentes disciplinas do curso. Dessa forma, o estágio visa direcionar o ensino como elemento interdisciplinar, em que o aluno, sob orientação dos professores, possa analisar situações concretas e aplicar sobre estas os conhecimentos passados no curso. De modo complementar, cria-se a oportunidade para que o aluno tenha contato com profissionais do mercado, ampliando a aquisição de conhecimentos relacionados a postura profissional e aos aspectos práticos relacionados às diferentes disciplinas ministradas no curso. O estágio não é obrigatório para a integralização do curso. Fica facultada ao aluno a realização do estágio sendo que este pode ser contemplado em qualquer período de formação do curso, mas orienta-se o aluno a realizar o estágio depois de adquirir um conhecimento mínimo básico durante o curso para que este contribua efetivamente para sua formação.

O aluno deve ser acompanhado durante as atividades de estágio por um orientador pertencente ao quadro docente do IFMG – Campus Formiga e também por um orientador dentro da empresa, devendo o mesmo, ao final do estágio, encaminhar sua avaliação e uma declaração onde conste um sumário das atividades desenvolvidas e a carga horária.

O aluno deverá entregar um relatório detalhado das atividades desenvolvidas para a apreciação do professor orientador.
O estágio, por meio da vivência de situações concretas de trabalho, poderá ser realizado:

- na própria escola, sob a forma de projetos amplos ou de etapas típicas do(s) processo(s) produtivo(s) da área profissional;
- em empresas e em outras organizações;
- em unidades de aplicação ou em empresas pedagógicas;
- sob a forma de atividades de pesquisa e de extensão, mediante a participação dos alunos;
- em empreendimentos ou projetos de interesse sociocomunitário.

Mesmo com a modalidade de estágio do Curso Técnico em Eletrotécnica sendo não obrigatória, a sua realização e acompanhamento deve seguir as normas e procedimentos adotados pela secretaria de extensão e pesquisa do campus.

8.1.7. Atividades complementares

As atividades complementares têm como objetivos ampliar o conhecimento do estudante, estimular suas potencialidades, relacionar a teoria à prática, desenvolver a criatividade e a autonomia, incentivar e oportunizar a participação da comunidade no processo ensino-aprendizagem.

Serão realizadas por meio de atividades tais como: palestras, simpósios; colóquios; mesas redondas, congressos, minicursos, oficinas, projetos de extensão e pesquisa, participação em órgãos dos colegiados, participação em atividades desportivas e culturais, realização de estágio, e outras, consideradas pelo Colegiado de Curso, relevantes para a formação do estudante.
As diretrizes das atividades acadêmicas complementares, a tabela com as equivalências de carga horária entre as mesmas, os documentos para certificação e o fluxograma do processo, são apresentadas no Apêndice B e nos Anexos II e III.

8.1.7.1 Iniciação à pesquisa

As atividades de iniciação à pesquisa podem ser exercidas tanto voluntariamente, quanto mediante a concessão de bolsas de Iniciação Científica Júnior (PIBIC-Jr) providas por órgãos financiadores e por recursos próprios do IFMG. As atividades destinam-se a estudantes do ensino médio que se proponham a participar, individualmente ou em equipe, de projeto de pesquisa desenvolvido por pesquisador qualificado, que se responsabiliza pela elaboração e implementação de um plano de trabalho a ser executado com a colaboração do candidato por ele indicado.

Alinhado ao que preconiza o CNPq, as ações de Iniciação Científica Júnior do IFMG Campus Formiga objetivam “despertar vocação científica e incentivar talentos potenciais” entre estudantes do ensino médio profissionalizante (CNPQ, 201-).

8.1.7.2 Iniciação à Extensão

Os projetos de extensão são desenvolvidos pelo IFMG Campus Formiga com o objetivo de possibilitar a inserção dos estudantes na realidade local e regional, buscando sua formação profissional e humanística. A Secretaria de Extensão, Pesquisa e Pós-graduação do Campus Formiga é responsável pela administração do programa.

8.1.7.3 A Jornada de Arte e Cultura

Atendendo aos anseios dos estudantes do Campus Formiga e diante da necessidade de envolvê-los em atividades diversificadas que visam propiciar a apropriação de sabe-
res formativos diversificados e reconhecimento da cidadania, o IFMG Campus Formiga promove anualmente a Jornada de Arte e Cultura.

A iniciativa da Jornada é promover a integração da escola aos espaços culturais, de modo a colaborar para que o aluno amplie sua visão de mundo, valorizando as diferentes manifestações culturais de seu entorno, a partir da interação entre homem, sociedade, cultura e educação, e também por meio de ações que estimulem práticas culturais e educacionais em parceria com escolas de música, arte, dança, teatro, entre outros.

A Jornada de Arte e Cultura permite que os alunos tenham acesso aos diferentes tipos de expressões artísticas por meio da participação em oficinas experimentais e através da exposição de diversos artistas ligados aos mais variados tipos de expressões da arte. Dessa forma permitimos que os alunos possam vivenciar a arte por meio de diversas oficinas experimentais (Dança, Música, Desenho, Teatro, Fotografia e Cinema); que eles demonstrem, através de apresentações e/ou shows, diversas formas de expressão da arte, orientados por artistas locais; que os alunos do IFMG Campus Formiga sintam incentivados a se inscreverem para apresentarem seus talentos expressos em forma de arte à comunidade acadêmica; que possam promover a democratização cultural e possibilitamos aos alunos novos meios de conhecimento e incentivamos a busca pela arte.

8.1.8. Trabalho de conclusão de curso (TCC)

Não haverá Trabalho de Conclusão de Curso (TCC) no curso técnico em Eletrônica.

8.2. Apoio ao discente

O IFMG realiza ações de apoio ao discente, através do Programa de Assistência Estudantil PAE. O PAE configura-se num conjunto de princípios e diretrizes que orientam
o desenvolvimento de ações capazes de democratizar o acesso e a permanência dos estudantes. Tem como objetivos:

- Minimizar os efeitos das desigualdades sociais e regionais e favorecer a permanência dos estudantes no Instituto, até a conclusão do respectivo curso;
- Diminuir a evasão e o desempenho acadêmico insatisfatório por razões socioeconômicas;
- Reduzir o tempo médio de permanência dos estudantes entre o ingresso e a conclusão do curso;
- Inserir os alunos em atividades culturais e esportivas como complemento de suas atividades acadêmicas; e
- Contribuir para a inclusão social pela educação.

O Programa de Assistência Estudantil do IFMG subdivide a concessão de benefícios em categorias:

- de caráter socioeconômico: auxílio financeiro que tem por finalidade minimizar as desigualdades sociais e contribuir para a permanência dos estudantes no IFMG;
- de mérito acadêmico: programa de apoio didático que consiste na concessão de bolsas monitoria para estudantes de cursos superiores selecionados por mérito acadêmico, com o objetivo de proporcionar aos estudantes suporte-didático-pedagógico para a superação de dificuldades nas disciplinas iniciais dos respectivos cursos;
- de complemento das atividades acadêmicas como seguro escolar, assistência à saúde, práticas culturais, esporte, visitas técnicas, participação em eventos e apoio aos estudantes com necessidades educacionais específicas.

O campus Formiga possui ainda o Núcleo de Apoio às Pessoas com Necessidades Educacionais Específicas - NAPNEE, que é o núcleo de assessoramento que articula as ações de inclusão, acessibilidade e atendimento educacional especializado. Tem como público-alvo os alunos com necessidades educacionais específicas: alunos com deficiência:
aqueles que têm impedimentos de longo prazo de natureza física, intelectual, mental e sensorial; alunos com transtornos globais do desenvolvimento: aqueles que apresentam um quadro de alterações no desenvolvimento neuropsicomotor, comprometimento das relações sociais, da comunicação ou estereotipias motoras. Incluem-se nessa definição alunos com Transtorno do Espectro Autista; alunos com altas habilidades/superdotação: aqueles que apresentam potencial elevado e grande envolvimento com as áreas do conhecimento, isoladas ou combinadas, nas esferas intelectual, artística e criativa, cinestésico-corporal e de liderança e os alunos com distúrbios de aprendizagem e/ou necessidades educacionais específicas provisórias de atendimento educacional.

No início do ano, é feita uma avaliação diagnóstica e a partir dessa avaliação, um programa de nivelamento aos alunos ingressantes para sanar deficiência encontrada e dar suporte para o desenvolvimento no atual estágio que se encontra.

8.3. Critérios e procedimentos de avaliação

A avaliação do desempenho do discente se dará de forma contínua e cumulativa, com a prevalência dos aspectos qualitativos sobre os quantitativos e dos resultados ao longo do período letivo sobre os de eventuais provas finais. Em nenhuma hipótese, os instrumentos avaliativos poderão ultrapassar, isoladamente, 40% (quarenta por cento) do total distribuído em cada etapa avaliativa, exceto nas etapas de recuperação. Além disso, ao longo da etapa, deverão ser garantidos, no mínimo, dois tipos diversificados de instrumentos avaliativos, tais como provas (dissertativa, objetiva, oral ou prática), trabalhos (individual ou em grupo), debates relatórios, síntese ou análise, seminários, visita técnica programada com roteiro prévio, portfólio, autoavaliação e participação em atividade proposta em sala de aula, dentre outros.

O Curso Técnico em Eletrotécnica, integrado ao ensino médio, será organizado em 3 (três) etapas por módulo anual, sendo distribuídos 30 (trinta) pontos na primeira eta-
pa, 35 (trinta e cinco) pontos na segunda etapa e 35 (trinta e cinco) pontos na terceira etapa.

Poderá ser concedida revisão de avaliações escritas e de frequência, quando requerida formalmente, no prazo de 2 (dois) dias úteis após o acesso do discente à avaliação corrigida e lançamento da frequência.

O discente poderá solicitar a realização de avaliações perdidas, em segunda chamada, no prazo de até 2 (dois) dias úteis após o término do impedimento, mediante apresentação de atestado médico ou outro documento que justifique sua ausência. Caberá à Diretoria de Ensino do campus especificar o processo de avaliação das solicitações.

8.3.1. Aprovação

Será considerado aprovado o discente que satisfizer as seguintes condições mínimas:

I. 75% (setenta e cinco por cento) de frequência da carga horária total do período letivo;

II. rendimento igual ou superior a 60% (sessenta por cento) em todas as disciplinas cursadas.

Em nenhuma hipótese, será permitido o abono de faltas, salvo nos casos previstos no Decreto-Lei nº 715/1969. Nestes casos, os discentes que fizerem jus ao abono deverão fazer a solicitação junto ao Setor de Registro e Controle Acadêmico em até 2 (dois) dias úteis contados a partir da data de término do afastamento, anexando a documentação comprobatória.

8.3.2. Recuperação

A recuperação da aprendizagem consiste de estratégias disponíveis para proporcionar a superação das dificuldades de aprendizagem vivenciadas pelos discentes durante seu
percurso escolar. Para tanto, os estudos de recuperação deverão ser garantidos de forma contínua e paralela ao período letivo, sendo dever do docente estabelecer estratégias de recuperação da aprendizagem para os discentes de menor rendimento, utilizando horários de atendimento, de monitorias e tutorias, além dos horários regulares de aula.

Com relação aos aspectos quantitativos da recuperação, ao longo do período letivo, deverão estar previstas 2 (duas) recuperações parciais, sendo uma ao final da primeira etapa e outra ao final da segunda etapa, e 1 (uma) recuperação final para o discente que não alcançar o mínimo de 60% (sessenta por cento) de aproveitamento na disciplina. A recuperação final só se aplicará caso o discente obtenha, também, o mínimo de 75% (setenta e cinco por cento) da frequência global. Para fins de registro, ao final de cada processo de recuperação, será considerada a maior nota verificada entre aquelas obtidas antes e após o processo, sendo limitada a 60% (sessenta por cento) do total de pontos distribuídos no período avaliado.

8.3.3. Reprovação

Será considerado reprovado o discente que obtiver frequência inferior a 75% (setenta e cinco por cento) da carga horária total do período ou que possuir rendimento inferior a 60% (sessenta por cento), após recuperação final, em 3 (três) ou mais disciplinas.

8.3.4. Progressão parcial e estudos orientados

O discente que tenha sido aprovado por frequência global e reprovado por rendimento em, no máximo, 2 (duas) disciplinas dentre as cursadas no período letivo, sejam elas da mesma série/módulo ou de séries/módulos distintos, excluídas as disciplinas eletivas, terá o direito à progressão parcial, podendo prosseguir os estudos na série/módulo seguinte. Neste caso, a(s) disciplina(s) pendentes deverão ser cursadas, obrigatoriamente, no período
letivo seguinte, em turmas regulares, em turmas de dependência ou na forma de estudos orientados.

Cabe à Coordenação do Curso definir a oferta dos estudos orientados, especificamente para cada disciplina, observando a pertinência e a viabilidade deste recurso, além das seguintes condições:

I. percentual mínimo de 20% (vinte por cento) da carga horária da disciplina em encontros presenciais;

II. horário disjuntor das aulas do período letivo regular do discente;

III. mesmo Sistema de Avaliação adotado no curso regular.

8.4. Infraestrutura

Como sugerido pelas diretrizes do MEC, além dos professores qualificados, recomenda-se existência de uma biblioteca incluindo acervo específico e atualizado, além de Laboratório de informática com softwares específicos, bem como Laboratórios específicos, com descrição de suas instalações e finalidades a que se destinam. Nesse sentido, a estrutura apresentada nos tópicos a seguir, busca suprir tais demandas.

8.4.1. Espaço físico

O campus Formiga está localizado na rua São Luiz Gonzaga, s/n, no bairro São Luiz do município de Formiga com área total de aproximadamente 12.788 m² e área construída de aproximadamente 6.273 m². Possui biblioteca, salas de aula, laboratórios de informática, laboratório de Física e Química, laboratórios especializados na área de Engenharia Elétrica e Ciência da Computação, secretaria de controle acadêmico, diretoria de
ensino, setores de gestão dos cursos técnicos e superiores, setor de pesquisa, extensão e assistência estudantil, diretoria administrativa, diretoria geral, coordenação de tecnologia da informação, cantina, sala para os professores, sala para os coordenadores de curso e almoxarifado. O acesso à internet wi-fi está disponível em todos os setores do campus.

De forma geral, o campus está organizado da seguinte forma:

- **Bloco A** – setor administrativo do campus; Núcleo de Atendimento às Pessoas com Necessidades Específicas (NAPNEE);

- **Bloco B** – laboratórios de ensino; Laboratório de Sistemas Automotivos e Polo de Inovação;

- **Bloco C** – salas de aula; Diretoria de Ensino; Sala de Atendimentos (Psicologia, Pedagogia, Assistência Social e Assistência ao Aluno); Laboratório de Robótica e Laboratório de Matemática;

- Estacionamento para veículos oficiais e estacionamento para servidores;

- Cantina e copa.

O campus conta com 19 salas de aula, todas equipadas com projetor multimídia e quadro branco, com capacidades que variam entre 20 e 90 alunos. Todas as salas de aula teóricas estão alocadas no bloco C, possuindo acesso à Internet, quadro negro e projetor multimídia para melhor atender aos docentes e discentes.

A sala dos professores é equipada com conjuntos de mesas que acomodam vinte professores, além de quatro estações individuais de trabalho, dois computadores com acesso à internet, copiadora multifuncional e armários pessoais em número suficiente para os professores do campus.
A sala da coordenação possui nove estações de trabalho individuais, uma para cada coordenação de curso, todas equipadas com computador com acesso à internet.

O campus conta ainda com uma cantina e mesas dispostas interna e externamente da mesma. Possui também uma copa.

Considerando o princípio da economicidade, que é um dos pilares conceituais da Administração Pública, o campus Formiga, mediante a determinação do emprego de técnicas sustentáveis de construção civil nas obras executadas, vem aplicando, sempre que possível, os conceitos de redução, reutilização e reciclagem de materiais, conforme destacado abaixo:

- Com a finalidade de economia e reuso de água, foi construída uma caixa d’água para reaproveitamento da água pluvial com capacidade de 100 mil litros (84 mil da caixa d’água subterrânea e 16 mil litros as caixas d’água sobre o prédio);

- Visando a eficiência energética, os novos edifícios possuem brises que barram a incidência da radiação solar antes que ela atinja a fachada e, consequentemente, o ambiente interno, reduzindo o valor recebido. O Campus Formiga conta ainda com uma usina fotovoltaica que gera energia elétrica por conversão fotovoltaica, contando com um conjunto de 100 painéis fotovoltaicos com capacidade de geração de 25Kwp.

- As lâmpadas incandescentes tradicionais estão sendo trocadas por lâmpadas fluorescentes compactas e de led, que possuem alta eficiência e longa duração.
Laboratório(s) de informática

O Campus Formiga do IFMG conta hoje com três laboratórios de informática destinados à realização de aulas práticas empregando softwares educacionais específicos para cada área do conhecimento e também para o desenvolvimento de software. O Laboratório 01 conta com 40 computadores, o Laboratório 02 com 30 computadores e o Laboratório 03 com 27 computadores, além de uma lousa eletrônica com tela interativa e sensível ao toque. Esses computadores dos laboratórios são dual-boot com os sistemas operacionais Linux (UBUNTU) e Windows 7. Para diminuir os custos com licenças de softwares no laboratório, tem sido fortemente recomendada a utilização de software livre.

Os computadores dos laboratórios de informática são dual-boot com os sistemas operacionais Linux e Windows instalados. Para reduzir o custo de softwares disponibilizados no laboratório, tem sido fortemente recomendada a utilização de softwares livres. Entretanto, o campus tem uma parceria com a Microsoft que permite que vários softwares da empresa sejam instalados nos laboratórios, bem como disponibilizados a alunos e professores gratuitamente. Foram elaborados manuais de utilização para os laboratórios de modo a preservar os equipamentos e administrar a correta utilização dos meios disponibilizados. Os computadores possuem restrição de instalação de quaisquer tipos de ferramentas ou programas que não tenham sido aprovadas pela coordenação, prevenindo assim questões de desrespeito ao direito autoral (pirataria) e utilização incorreta da conexão de internet disponibilizada. Todos os computadores dos laboratórios têm instalado um software que permite sua total reinicialização (congelamento do Windows), permitindo que todas as vezes em que são religados toda a configuração inicial seja retomada. Isso permite maior disponibilidade, evitando problemas com vírus e frequentes manutenções. Ao final de todo semestre são realizadas manutenções preventivas nos computadores.

O Campus Formiga também conta com um laboratório para as práticas das disciplinas de hardware, robótica, sistemas operacionais, redes de computadores e eletrônica digital. Sobre a infraestrutura do laboratório de hardware, ele é composto por equipamen-
tos que permitem aos alunos praticarem os conceitos de manutenção de computadores e realizarem atividades práticas de eletricidade básica e eletrônica digital. O laboratório possui infraestrutura para instalação e manutenção de sistemas operacionais, assim como para atividades de projeto, implementação e gerenciamento de redes de computadores. Atividades de confecção e teste de cabos de rede, projetos de sistema de cabeamento estruturado e implementação de redes locais com e sem fio são realizadas, visando fornecer conhecimento prático aos alunos.

As atividades referentes à robótica são desenvolvidas no Laboratório de Robótica Educacional e Empresa Simulada. Nas aulas de robótica os alunos são estimulados a desenvolverem a estrutura mecânica de seus robôs e programá-los para que executem as operações especificadas pelo professor. Por emprego dos kits didáticos Lego são realizadas aulas e demonstrações envolvendo conceitos de Robótica para os cursos técnicos Integrados de Administração e de Informática. Estes kits didáticos também são utilizados para que equipes de alunos participem de competições regionais e nacionais sobre Robótica Educacional. Neste mesmo ambiente, funciona o Laboratório de Empresa Simulada em que os alunos por meio da utilização de notebooks empregam o software Bernard que consiste de um simulador gerencial. Este software de simulação gerencial permite que os alunos vivenciem experiências práticas da gestão de empresas, permitindo o desenvolvimento de habilidades gerenciais. O software adquirido (da empresa Bernard Simulação Gerencial) é composto por três elementos: Simulador Gerencial do setor industrial, Websimuladores e Sistema de Apoio às Decisões. Além deste o Laboratório de Empresa Simulada também conta com o Sistema Economatica que é utilizado por analistas em inúmeras instituições de diversos segmentos, tais como: gestoras de fundos, fundações de previdência, corretoras de valores, bancos de investimento, departamentos de relações com investidores, wealth-management, private-banking, family-offices, consultorias, instituições de ensino e outras. Trata-se de uma ferramenta para análise de balanços, mercado de ações, fundos de investimento e títulos públicos, composta por um conjunto de avançados módulos de análise que operam sobre bases de dados de grande abrangência e alta confiabilidade.
Deste modo, a aplicação multidisciplinar da teoria aprendida pelos alunos permite que eles estejam motivados a se engajar mais nos estudos e fornece um amplo horizonte para a sua formação profissional. Os laboratórios dispõem de normas para acesso e utilização de cada ambiente, que estão devidamente publicadas para todos os alunos. As portas dos laboratórios de informática 01, 02 e 03 são controladas por fechaduras com acionamento por chaves RFID, devidamente cadastradas para que somente pessoas autorizadas possam ter acesso.Segue abaixo a descrição dos equipamentos e instalações:

- Laboratório de Informática I com capacidade para 40 alunos:

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computador</td>
<td>40</td>
</tr>
<tr>
<td>Switch com capacidade para 48 portas</td>
<td>1</td>
</tr>
<tr>
<td>Aparelho de ar condicionado</td>
<td>2</td>
</tr>
<tr>
<td>Mesas para desktop acompanhadas com cadeira</td>
<td>40</td>
</tr>
</tbody>
</table>

- Laboratório de Informática II com capacidade para 40 alunos:

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computador</td>
<td>40</td>
</tr>
<tr>
<td>Aparelho de ar condicionado</td>
<td>2</td>
</tr>
<tr>
<td>Mesas para desktop acompanhadas com cadeira</td>
<td>40</td>
</tr>
</tbody>
</table>

- Laboratório de Informática III com capacidade para 40 alunos:

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computador</td>
<td>26</td>
</tr>
<tr>
<td>Switch com capacidade para 48 portas</td>
<td>1</td>
</tr>
<tr>
<td>Aparelho de ar condicionado</td>
<td>2</td>
</tr>
<tr>
<td>Mesas para desktop acompanhadas com cadeira</td>
<td>28</td>
</tr>
</tbody>
</table>

- Laboratório de Arquitetura e Redes de Computadores (L.A.R.) – com capacidade para 25 alunos:

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventiladores</td>
<td>2</td>
</tr>
<tr>
<td>Computador</td>
<td>20</td>
</tr>
<tr>
<td>Switch com capacidade para 48 portas</td>
<td>1</td>
</tr>
<tr>
<td>Switch com capacidade para 24 portas</td>
<td>3</td>
</tr>
</tbody>
</table>
Switch com capacidade para 16 portas | 2
---|---
Switch com capacidade para 8 portas | 2
Roteador Wi-fi | 3
Ponto de acesso Wi-fi | 1
Telefone VoIP | 1
Kit de Sistemas Embarcados (Arduino) | 24
Bancadas para 2 desktops | 12
Cadeiras | 35
Workstation | 1

- Laboratório de Inteligência Computacional (L.In.C.) – com capacidade para 25 alunos:

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventiladores</td>
<td>2</td>
</tr>
<tr>
<td>Computador</td>
<td>20</td>
</tr>
<tr>
<td>Switch com capacidade para 48 portas</td>
<td>1</td>
</tr>
<tr>
<td>Bancadas para 2 desktops</td>
<td>12</td>
</tr>
<tr>
<td>Cadeiras</td>
<td>30</td>
</tr>
</tbody>
</table>

- Laboratório de Robótica Educacional e Empresa Simulada – com capacidade para 25 alunos:

<table>
<thead>
<tr>
<th>Equipamentos do Laboratório de Empresa Simulada</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventiladores</td>
<td>2</td>
</tr>
<tr>
<td>Notebook</td>
<td>10</td>
</tr>
<tr>
<td>Switch com capacidade para 48 portas</td>
<td>1</td>
</tr>
<tr>
<td>Bancadas</td>
<td>8</td>
</tr>
<tr>
<td>Cadeiras</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipamentos do Laboratório de Robótica Educacional</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit Lego Mindstorms Education NXT 9797</td>
<td>8</td>
</tr>
<tr>
<td>Kit Lego Mindstorms Education NXT 9695</td>
<td>10</td>
</tr>
<tr>
<td>Kit Lego Mindstorms Education EV3 Core Set 45544</td>
<td>6</td>
</tr>
<tr>
<td>Kit Lego Mindstorms Education EV3 Expasion Set 45560</td>
<td>6</td>
</tr>
<tr>
<td>Kit Lego Mindstorms Education EV3 Core Set 45544</td>
<td>2</td>
</tr>
</tbody>
</table>

8.4.1.2 Laboratório(s) específico(s)
Laboratório de Matemática:

O laboratório de Matemática conta com sete mesas com capacidade para cinco pessoas cada, dois quadros, sendo um totalmente branco e outro mesclado entre quadro branco (pincel) e quadro negro (giz), dois arquivos e seis armários para guarda de materiais diversos necessários para algumas aulas práticas do curso de Licenciatura de Matemática, como papéis quadriculados, régua, esquadros, compassos, transferidores, jogos diversos, material dourado, entre outros. Conta ainda com um vasto acervo de sólidos geométricos de acrílico dos mais variados tipos.

Laboratório de Física e Química

Este ambiente é destinado à realização de práticas e experimentos das áreas de Física e Química. É nesse espaço que o aluno tem o primeiro contato com o método científico e experimental por meio das disciplinas de laboratório. Em linhas gerais, o laboratório de Física O laboratório possui 5 (cinco) bancadas com capacidade total de até 25 alunos, as quais estão equipadas com instalação elétrica com tensões de 110V e 220V. O laboratório compreende também uma estação de trabalho para o técnico de laboratório, uma estação de trabalho para o professor responsável, quadro branco, estação de higienização para práticas de química, kits para realização de experimentos e armários.

Laboratório de Automação:

Este ambiente é utilizado para ministrar as disciplinas do curso de bacharelado em Engenharia Elétrica: Instrumentação e Automação Industrial, Laboratório de Instrumentação e Automação Industrial, e todas as disciplinas Optativas do núcleo de Automação, bem as disciplinas do curso técnico integrado em Eletrotécnica: Automação e Instrumentação e Laboratório de Automação e Instrumentação. O laboratório de Automação tem capacidade para até 18 alunos e proporciona a realização de ensaios e práticas nas áreas de instrumentação, hidráulica, pneumática, automação e robótica. A área de instrumentação conta com módulos XC201 da Exsto, onde possuem sensores digitais, capacitivos e indutivos. A hi-
dráulica e pneumática são formadas por bancadas da Festo, onde pode-se trabalhar com acionadores e válvulas. A automação contêm módulos XC110 da Exsto, onde os alunos podem realizar trabalhos utilizando PLC, IHM, inversores de frequência, motores assíncronos trifásicos e uma planta de nível. Já a área da robótica contém disponível um manipulador robótica industrial da ABB, onde pode-se realizar a programação e testes no mesmo. Como ferramenta auxiliar, o laboratório conta com fontes de alimentação DC simétricas, osciloscópios e geradores de funções arbitrárias, bem como os seguintes equipamentos:

- 5 bancadas pneumáticas da Festo;
- 5 bancadas hidráulicas da Festo;
- 6 kits XC201 Exsto;
- 6 kits XC110 Exsto;
- 6 computadores;
- 5 compressores hidráulicos;
- 6 motores trifásicos 1/4 cv;
- 3 fontes DC simétricas;
- 4 osciloscópios;
- 7 geradores de função com dois canais e 6 tipos de formas de ondas diferentes;
- 1 braço robótico;
- 1 planta de nível com PLC.

Laboratório de Eletrônica

O laboratório possui 5 (cinco) bancadas, para atividades práticas na área de Eletrônica Digital, com capacidade para 20 alunos. É realizada a formação de turmas menores para um melhor acompanhamento da atividade prática. O laboratório possui 3 (três) armários metálicos fechados, com pés, para o armazenamento dos equipamentos e dispositivos, aumentando a vida útil de cada um deles e mantendo-os seguros, além de quadro branco,
projetor multimídia e uma mesa de escritório simples com cadeira, para utilização pelo professor. Nas bancadas são disponibilizadas 10 computadores, com as seguintes ferramentas computacionais utilizadas durante as aulas:

- software Altera Quartus;
- software Altera ModelSIM;
- 10 licenças do software Proteus ISIS Professional v.8. e;
- 10 licenças do software compilador MikroC PRO For PIC v.6.6.

Estão disponíveis para as atividades práticas os seguintes equipamentos:

- Kit didático de eletrônica digital e analógica (fabricante Bit9), 6 unidades de cada (total 12);
- Kit didático de eletrônica de potência (fabricante Datapool), 5 unidades;
- Kits didático de Microcontroladores NEO 201 (fabricante Exsto), 7 unidades;
- Kits didático de Microcontroladores XM118 (fabricante Exsto), 10 unidades;
- Osciloscópio digital de dois canais, 60 MHz, 5 unidades;
- Multímetro digital, 15 unidades;
- Gerador de função ICEL GV 2002, 5 unidades;
- Fonte de alimentação DC 30V Instrutemp ITFA 5010, 10 unidades;
- Protoboard 2400 Furos, 13 unidades;
- Componentes discretos de diversos valores e circuitos integrados, dentre eles: resistores de carbono, capacitores cerâmico e eletrolítico. Circuitos Integrados com as funcionalidades de: Portas lógicas, contadores, latches, flip-flops, multiplexadores, codificadores e decodificadores, temporizador, conversores A/D e D/A. Por se tratarem de itens de consumo, a cada semestre é realizada a reposição de cada um dos itens, respeitando a necessidade de utilização nas aulas práticas.
Laboratório de Circuitos Elétricos

O laboratório de Circuitos Elétricos tem capacidade para até 20 alunos e proporciona a realização de ensaios e práticas enfatizando os princípios de funcionamento de Circuitos Elétricos com cargas resistivas, capacitivas, indutivas entre outras combinações. O aluno tem possibilidade de aprender a analisar circuitos em regime AC e DC, desde associação de impedâncias série/paralelo ou combinações destas, desenvolver diversos projetos eletroeletrônicos, e de analisar técnicas de correção de fator de potência.

Para qualquer atividade que vier a ser desenvolvida nesse ambiente é fundamental conhecer os procedimentos de segurança que irão permitir uma atuação com um mínimo de risco. O laboratório oferece para uso didático ou para fins de pesquisa. Bancadas trifásicas de medidas elétricas e ensaios de circuitos elétricos, geradores de funções digital, osciloscópios digitais com 2 canais 60 MHz- 1 Msample/s, Fonte DC, variadores de tensão CA monofásicos e trifásicos, componentes eletrônicos, módulos de ensaio de circuitos elétricos, analisadores trifásicos, equipamentos de medição: voltímetros, amperímetros e wattímetros analógicos e digitais, galvanômetros, alicates wattimétricos, décadas resistivas e capacitivas, entre outros.

Laboratório de Máquinas Elétricas

O laboratório de Máquinas Elétricas tem capacidade de até 20 alunos e proporciona a realização de ensaios e práticas enfatizando os funcionamentos de máquinas elétricas atuando como motores e/ou como geradores. Ele é utilizado também para demonstrar o princípio de funcionamento de relés e a realização de ensaios com transformadores didáticos. O ambiente ainda possibilita a demonstração de diferentes maneiras de partidas de motores (partida estrela-triângulo, partida compensada, partida direta, soft-starters, inversor de frequência, conversor CA-CC, entre outras), enfatizando as vantagens e desvantagens de cada método. Na área de instalações elétricas o laboratório também é utilizado para o ensino prático onde é possível realizar montagens de circuitos de iluminação utili-
zando interruptores simples, paralelos e intermediários (além de relé fotoelétrico e minuteria), tomadas, bem como a confecção correta de emendas de condutores entre outras práticas. Para qualquer atividade que vier a ser desenvolvida nesse ambiente é fundamental conhecer os procedimentos de segurança que irão permitir uma atuação com um mínimo de risco. O laboratório possui para uso didático ou para fins de pesquisa Conjunto de Máquinas Acopladas (uma máquina de corrente contínua, uma máquina síncrona e uma máquina assíncrona), Bancadas de Treinamento em Eletrotécnica Industrial DLB-ELE02, Kits didáticos de Transformador desmontável, Painel didático de comandos elétricos e partida de motores DLB-MAQCE, Bancadas de soft-starter ABB XE100 e WEG SSW-06, Inversor de frequência WEG CFW-11, Freio de Foucault, Kits de Controle de Velocidade de Motores CC WEG CTW900, Kit didático para ensino e montagens de Instalações Elétricas e de Eletrotécnica Industrial, Fontes DC, Multímetros, Wattímetros, alicates wattimétricos, alicates amperimétricos, luxímetros, megôhmeter, terrômetro, varivolts monofásicos e trifásicos, multianalisador de gases, registrador e analisador de qualidade de energia RMS MARH, fasímetros digitais, Transformadores monofásicos 110/220-12 V /300 VA, 1000/220-440 V / 0.6 kVA, transformadores de corrente do tipo barra 600(A)-5(A)/0.3C12.5 e do tipo janela 400(A)-5(A)-0.3C12.5, entre outros equipamentos.

Laboratório de Sistemas Automotivos

O laboratório conta com bancada veicular daplataforma FIAT 326, montada pela FIAT Automóveis, bancada essa similar à presente na estrutura do Laboratório de Experimentação Elétrica da fábrica da FIAT, em Betim/MG. Além da bancada, o Laboratório de Sistemas Automotivos conta também com diversos equipamentos, dentre eles: fonte de alimentação, multímetro, gerador de sinal, estação de solda, e osciloscópio com interface para rede CAN. Faz-se presente também licença de **software** como o DIAnalyzer da FIAT. Toda essa estrutura surgiu da parceria firmada entre o IFMG Campus Formiga, e a FIAT Automóveis, para desenvolvimento de pesquisa denominada, "Projeto de Pesquisa e Desenvolvimento de Soluções Técnicas para Sistemas Embarcados e **Softwares** de Autodiag-
nóstico e Rede", conforme primeira ação do Convênio de Cooperação Científica, Técnica e Educacional, assinado pelos representantes da Fiat Automóveis S/A e do Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais em 24 de Janeiro de 2014.

O presente contrato estipula o uso exclusivo do Laboratório para desenvolvimento da referida pesquisa até Dezembro/2016. Após essa data, o Laboratório deverá ser empregado pelo IFMG Campus Formiga em atividades de pesquisa e ensino.

8.4.1.3 Biblioteca

A biblioteca do Campus Formiga está localizada no bloco A do campus, com horário de funcionamento de 07h às 21h. Ela conta com três estações de trabalho, sendo cada uma equipada com microcomputador destinado ao uso pelos alunos, seis mesas de estudo, aparelho de ar-condicionado e registro digital de retirada de livros. O acervo da biblioteca é composto de 3000 títulos e um total de 9323 exemplares para atendimento das demandas das áreas de Administração, Ciência da Computação, Engenharia Elétrica, Gestão Financeira e Matemática, além dos periódicos. O acesso ao acervo da biblioteca pode ser realizado também através do sistema Pergamum4. De outra forma, os alunos, através do cadastro de um usuário/senha, têm acesso às Bibliotecas Virtuais (https://www.formiga.ifmg.edu.br/bi), onde são disponibilizados títulos de diversas áreas, que podem ser acessados integralmente através de qualquer computador conectado à internet.

8.4.2. Infraestrutura prevista

Atualmente está sendo construído o terceiro andar do bloco B do IFMG-Campus Formiga. A descrição dos ambientes que compõem este andar bem como a previsão de implantação estão relacionados abaixo:
<table>
<thead>
<tr>
<th>Ambiente</th>
<th>Quantidade</th>
<th>Previsão de implantação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratório de Informática 4</td>
<td>1</td>
<td>Março/2020</td>
</tr>
<tr>
<td>Laboratório de Física</td>
<td>1</td>
<td>Março/2020</td>
</tr>
<tr>
<td>Laboratório de Química e Biologia</td>
<td>1</td>
<td>Março/2020</td>
</tr>
<tr>
<td>Laboratório de Ideação / Microauditório</td>
<td>1</td>
<td>Março/2020</td>
</tr>
<tr>
<td>Espaço Maker</td>
<td>1</td>
<td>Março/2020</td>
</tr>
<tr>
<td>Espaço para Pré-incubação de Startup’s</td>
<td>1</td>
<td>Março/2020</td>
</tr>
</tbody>
</table>

8.4.3. Acessibilidade

Em conformidade com o Decreto nº 5.296, de 2 de dezembro 2004, que regula-menta a Lei 10.098, de 19 de dezembro de 2000, o IFMG - Campus Formiga tem empre-endido esforços para adequar suas edificações existentes para torná-las apropriadas para acessibilidade de pessoas portadores de deficiência ou com mobilidade reduzida, sendo que já possui elevadores, rampas e banheiros adequados e adaptados.

Segue abaixo as principais ações já realizadas:

- Nas áreas externas da edificação, destinadas à garagem e ao estacionamento, foram reservadas vagas próximas aos acessos de circulação de pedestres, devidamente sinalizadas, para veículos que transportem pessoas portadoras de deficiência ou com mobilidade reduzida;
Os acessos ao interior das edificações estão livres de barreiras arquitetônicas e de obstáculos que impeçam ou dificultem a acessibilidade;

Os itinerários que comunicam horizontal e verticalmente todas as dependências e serviços dos edifícios, entre si e com o exterior, já cumprem os requisitos de acessibilidade, (com a instalação de elevadores e rampas);

Os edifícios já dispõem de banheiro acessível, distribuindo seus equipamentos e acessórios de maneira que possam ser utilizados por pessoa portadora de deficiência ou com mobilidade reduzida;

Foi promovida a eliminação de barreiras na comunicação, estabelecendo mecanismos e alternativas técnicas que tornam acessíveis os sistemas de comunicação e sinalização às pessoas portadoras de deficiência sensorial e com dificuldade de comunicação, como a instalação de pisos táteis para deficientes visuais, um mapa tático da edificação e a identificação em braile nas portas das salas.

Além disso, o Núcleo de Atendimento às Pessoas com Necessidades Educacionais Específicas (NAPNEE) do Campus Formiga, criado por meio da Portaria 02/2010 e vinculado diretamente ao Gabinete do Diretor Geral, possui uma sala no Bloco C (sala 13). O ambiente se constitui em um espaço para a acolhida aos estudantes e aos profissionais que trabalham no campus. Ela está equipada com os seguintes materiais:

- Cartucho de fita branca para rotulador;
- Fita rotuladora (perfil para rotuladora braille);
- Impressora Braille;
- Kit de desenho Braille;
- Lupa tipo pedra;
- Papel para escrita Braille;
- Rotuladora Braille;
- Scanner de alta resolução;
- Teclado Braille padrão ABN.
- 2 computadores- Estação de Trabalho (com leitor de tela);
- Acervo com 26 volumes;
- 3 carteiras adaptáveis (com ajustes na altura e inclinação);
- Tela Chroma key;
- 2 HDs externos;
- 3 bolas de futsal para cegos (com guizo embutido);
- 3 regletes de mesa;
- Câmera digital DSLR;
- Notebook.

O campus conta ainda com um profissional especializado para a tradução e interpretação em Libras. Além disso, o núcleo possui uma sala no Bloco A que é reservada exclusivamente para os atendimentos específicos aos alunos atendidos, garantindo sigilo e respeito.

Desde a sua criação, o NAPNEE do Campus Formiga mantém-se vigilante quanto aos direitos dos alunos com necessidades educacionais específicas e já conseguiu melhorias em diversas áreas, desde avanços na infraestrutura dos ambientes escolares, capacitação dos servidores do campus por meio de cursos, encontros e palestras, além de manter estreita comunicação com os professores para acompanhar o desempenho dos estudante.
8.5. Gestão do Curso

8.5.1. Coordenador de curso

Ao Coordenador de curso, eleito conforme regulamentação do Conselho Acadêmico do campus compete as atribuições estabelecidas no Regulamento de Ensino dos Cursos de Educação Profissional Técnica de Nível Médio do IFMG.

O quadro abaixo apresenta as informações sobre o Coordenador do curso Técnico em Eletrotécnica:

<table>
<thead>
<tr>
<th>Nome:</th>
<th>Gláucio Ribeiro Silva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portaria de nomeação e mandato:</td>
<td>Portaria 981 de 09 de agosto de 2019</td>
</tr>
<tr>
<td>Regime de trabalho:</td>
<td>40 horas com dedicação exclusiva</td>
</tr>
<tr>
<td>Carga horária destinada à Coordenação</td>
<td>10 horas semanais</td>
</tr>
<tr>
<td>Titulação:</td>
<td>Doutor</td>
</tr>
<tr>
<td>Contatos (telefone / e-mail):</td>
<td>(37) 991192654/</td>
</tr>
<tr>
<td></td>
<td>eletrotécnica.formiga@ifmg.edu.br</td>
</tr>
</tbody>
</table>

8.5.2. Colegiado de curso

Ao Colegiado de curso, composto e eleito conforme regulamentação institucional complementada pelo Conselho Acadêmico do campus compete as atribuições estabelecidas no Regulamento de Ensino dos Cursos de Educação Profissional Técnica de Nível Médio do IFMG.
O quadro abaixo apresenta as informações sobre o Colegiado do curso Técnico em Eletrotécnica:

<table>
<thead>
<tr>
<th>Nome</th>
<th>Função no Colegiado</th>
<th>Titular / Suplente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gláucio Ribeiro Silva</td>
<td>Coordenador do Curso</td>
<td>Titular</td>
</tr>
<tr>
<td>Felipe de Sousa Silva</td>
<td>Representante do corpo docente da área específica</td>
<td>Titular</td>
</tr>
<tr>
<td>Jose Antônio Moreira de Rezende</td>
<td>Representante do corpo docente da área específica</td>
<td>Titular</td>
</tr>
<tr>
<td>Lucas Frederico Jardim Meloni</td>
<td>Representante do corpo docente da área específica</td>
<td>Titular</td>
</tr>
<tr>
<td>Ulysses Rondina Duarte</td>
<td>Representante do corpo docente da área específica</td>
<td>Titular</td>
</tr>
<tr>
<td>Abraão de Oliveira Ferreira Couto</td>
<td>Representante do corpo discente</td>
<td>Titular</td>
</tr>
<tr>
<td>Júlia Luísa Xavier Fonseca</td>
<td>Representante do corpo discente</td>
<td>Suplente</td>
</tr>
<tr>
<td>Pedro Carlos Gomes da Silva</td>
<td>Representante do corpo discente</td>
<td>Suplente</td>
</tr>
<tr>
<td>Clerson Calixto Ribeiro</td>
<td>Representante da Diretoria de Ensino</td>
<td>Titular</td>
</tr>
</tbody>
</table>

8.6. Servidores

8.6.1. Corpo docente

A composição do corpo Docente que atua e atuaram no curso Técnico em Eletrotécnica tanto na formação geral quanto na formação específica estão relacionados abaixo, com descrição de suas formações.
<table>
<thead>
<tr>
<th>Nome</th>
<th>Titulação</th>
<th>Disciplina(s) de atuação</th>
<th>Regime de Trabalho</th>
</tr>
</thead>
</table>
| Alcides Farias Andrade | • Mestrado em Física
• Bacharelado em Física | • Física Técnica I
• Física Técnica II
• Física Técnica III | Dedicação Exclusiva
(40 horas) |
| Alex Eduardo Andrade Borges | • Mestrado em Matemática
• Graduação em Matemática | • Matemática I
• Matemática II
• Matemática III | Dedicação Exclusiva
(40 horas) |
| Aline Rodrigues Alves | • Mestrado em Economia Doméstica
• Especialização em Gestão em Atenção à Saúde
• Graduação em Biologia (em andamento)
• Graduação em Enfermagem | • Biologia I
• Biologia II
• Biologia III | Dedicação Exclusiva
(40 horas) |
| Ana Paula Carraro Borges | • Mestrado em Letras
• Especialização em Literatura Brasileira e Lingüística Aplicada
• Graduação em Letras (Português/Literatura) | • Língua Portuguesa
• Redação | Dedicação Exclusiva
(40 horas) |
| Ana Paula Lima dos Santos | • Mestrado em Engenharia Elétrica
• Graduação em Engenharia Elétrica | • Circuitos CA e Sistemas Trifálicos
• Laboratório de Circuitos CA e Sistemas Trifálicos
• Máquinas Elétricas e Acionamentos
• Laboratório de Máquinas Elétricas e Acionamentos | Dedicação Exclusiva
(40 horas) |
| Anamaria Teodora Coelho Rios da Silva | • Doutorado em Engenharia Química
• Mestrado em Engenharia Química
• Graduação em Química (Bacharel e Licenciatura) | • Química I
• Química II
• Química III | Dedicação Exclusiva
(40 horas) |
| André Roger Rodrigues | • Doutorado em Engenharia Elétrica
• Mestrado em Engenharia Elétrica
• Graduação em Engenharia Elétrica | • Circuitos CA e Sistemas Trifálicos
• Laboratório de Circuitos CA e Sistemas Trifálicos
• Instalações Elétricas
• Laboratório de Instalações Elétricas
• SEP | Dedicação Exclusiva
(40 horas) |
<p>| Carlos Renato Borges dos | • Doutorado em Engenharia Agrícola | • Eletrônica | Dedicação Exclusiva |</p>
<table>
<thead>
<tr>
<th>Nome</th>
<th>Programações</th>
<th>Localização</th>
<th>Dedicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santos</td>
<td>Mestrado em Engenharia Elétrica e de Computação</td>
<td>Laboratório de Eletrônica e Sistemas Embarcados</td>
<td>Dedicação Exclusiva (40 horas)</td>
</tr>
<tr>
<td>Efrem Ferreira</td>
<td>Mestrado em Engenharia Elétrica</td>
<td>Instrumentação e Automação Industrial</td>
<td>Dedicação Exclusiva (40 horas)</td>
</tr>
<tr>
<td>Felipe de Sousa Silva</td>
<td>Mestrado em Engenharia Elétrica</td>
<td>Instrumentação e Automação Industrial</td>
<td>Dedicação Exclusiva (40 horas)</td>
</tr>
<tr>
<td>Flávio Nasser Drumond</td>
<td>Mestrado em Evolução Cristal e Recursos Naturais</td>
<td>Geografia I</td>
<td>Dedicação Exclusiva (40 horas)</td>
</tr>
<tr>
<td>Francisco Renato Tavares</td>
<td>Doutorado em Filosofia</td>
<td>Estudos filosóficos e sociológicos</td>
<td>Dedicação Exclusiva (40 horas)</td>
</tr>
<tr>
<td>Gláucio Ribeiro Silva</td>
<td>Doutorado em Ciências - Física Aplicada a Medicina e Biologia</td>
<td>Física Técnica I</td>
<td>Dedicação Exclusiva (40 horas)</td>
</tr>
<tr>
<td>Guilherme Guimarães Leonel</td>
<td>Doutorado em História</td>
<td>História I</td>
<td>Dedicação Exclusiva (40 horas)</td>
</tr>
<tr>
<td>Nome</td>
<td>Especialização</td>
<td>Dedicacao Exclusiva</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Gustavo Lobato Campos</td>
<td>• Doutorado em Ciências Técnicas Nucleares</td>
<td>(40 horas)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mestrado em Engenharia Elétrica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graduação em Engenharia Eletrônica e de Telecomunicação</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eletrônica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Laboratório de Eletrônica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sistemas Embarcados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaqueline Vieira Lopes</td>
<td>• Mestrado Profissional em Matemática</td>
<td>(40 horas)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graduação em licenciatura em Matemática</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>José Antônio Moreira de Rezende</td>
<td>• Mestrado em Telecomunicações</td>
<td>(40 horas)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graduação em Engenharia Elétrica, Modalidade Eletrônica e com ênfase em</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Telecomunicações</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eletrotécnica I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eletrotécnica II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Instalações Elétricas Residenciais e Industriais</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Laboratório de Instalações Elétricas Residenciais e Industriais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilian de Lima Madeira</td>
<td>• Mestrado Profissional em Matemática</td>
<td>(40 horas)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Especialização em Ensino de Matemática</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graduação em Licenciatura em Matemática</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucas Frederico Jardim Meloni</td>
<td>• Dourando em Engenharia Elétrica</td>
<td>(40 horas)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mestrado em Engenharia Elétrica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graduação em Engenharia de Automação e Controle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eletrônica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Laboratório de Eletrônica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sistemas Embarcados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luiza Aguiar dos Anjos</td>
<td>• Doutorado em Ciência do Movimento Humano</td>
<td>(40 horas)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mestrado em Lazer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Especialização em Lazer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graduação em Educação Física</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Educação Física I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Educação Física II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Educação Física III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maisa Kely de Melo</td>
<td>• Doutorado em Modelagem Matemática e Computacional (em andamento)</td>
<td>(40 horas)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mestrado em Matemática</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Matemática III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nome</td>
<td>Graduação/Educação</td>
<td>Dedicação Exclusiva (horas)</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Mariana Guimarães dos Santos</td>
<td>Graduação em Matemática, Mestrado em Engenharia Elétrica, Graduação em Engenharia Elétrica</td>
<td>Dedicação Exclusiva (40 horas)</td>
<td></td>
</tr>
<tr>
<td>Rafael Vinícius Tayette da Nóbrega</td>
<td>Doutorado em Engenharia Elétrica, Mestrado em Engenharia Elétrica, Graduação em Engenharia Elétrica, Instalações Elétricas Residenciais e Industriais, Laboratório de Instalações Elétricas Residenciais e Industriais, SEP</td>
<td>Dedicação Exclusiva (40 horas)</td>
<td></td>
</tr>
<tr>
<td>Renan Souza Moura</td>
<td>Doutorado em Ciências, Mestrado em Química Analítica, Graduação em Licenciatura em Química</td>
<td>Dedicação Exclusiva (40 horas)</td>
<td></td>
</tr>
<tr>
<td>Thaís Lopes Reis</td>
<td>Mestrado em Engenharia Elétrica, Graduação em Física, Física Técnica I, Física Técnica II, Física Técnica III, Eletricidade Básica</td>
<td>Dedicação Exclusiva (40 horas)</td>
<td></td>
</tr>
<tr>
<td>Ulysses Rondina Duarte</td>
<td>Mestrado em Letras, Especialização em Língua Portuguesa, Redação</td>
<td>Dedicação Exclusiva (40 horas)</td>
<td></td>
</tr>
<tr>
<td>Willian Charles de Lima</td>
<td>Mestrado em Letras, Especialização em Língua Portuguesa</td>
<td>Dedicação Exclusiva (40 horas)</td>
<td></td>
</tr>
</tbody>
</table>
Abdanced Leadership
• Graduação em Letras

Zélia Terezinha Teixeira Rossi
• Mestrado em Ecologia Aplicada
• Graduação em Ciências Biológicas (bacharelado e licenciatura)
• Biologia I
• Biologia II
• Biologia III
Dedicação Exclusiva (40 horas)

8.6.2. Corpo técnico-administrativo

A composição do corpo técnico-administrativo que atua no curso técnico em Eletrônica lotados tanto em setores gerais quanto nos laboratórios de ensino específicos estão relacionados abaixo, com descrição sucinta de seus cargos.

<table>
<thead>
<tr>
<th>Nº</th>
<th>NOME</th>
<th>CARGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALYSSON FERNANDES SILVA</td>
<td>Técnico em Laboratório – Área Eletrônica</td>
</tr>
<tr>
<td>2</td>
<td>ALYSSON GERALDO SILVA</td>
<td>Engenheiro – Área</td>
</tr>
<tr>
<td>3</td>
<td>ANA KELLY ARANTES</td>
<td>Assistente Social</td>
</tr>
<tr>
<td>4</td>
<td>ANA MARIA TELES</td>
<td>Jornalista</td>
</tr>
<tr>
<td>5</td>
<td>ANDREZA PATRÍCIA BATISTA</td>
<td>Técnica de Laboratório - Eletrônica</td>
</tr>
<tr>
<td>6</td>
<td>ARLEM DOUGLAS VELOSO</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>7</td>
<td>CARMEM PEREIRA GONÇALVES RAIMUNDO</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>8</td>
<td>CLERSON CALIXTO RIBEIRO</td>
<td>Assistente de Aluno</td>
</tr>
<tr>
<td>9</td>
<td>CRISTINA MARA VILELA SILVA</td>
<td>Pedagoga</td>
</tr>
<tr>
<td>10</td>
<td>DAVI BERNARDES ROSA</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>11</td>
<td>EDUARDO TEIXEIRA FRANCO</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>12</td>
<td>ELAINE BELO VELOSO DA SILVA</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>13</td>
<td>ELIANA MARIA FRANCO RODRIGUES</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>14</td>
<td>EVANDRO DA SILVEIRA LOSCHI</td>
<td>Técnico de Laboratório - Área Informática</td>
</tr>
<tr>
<td>15</td>
<td>FABRICIO DANIEL FREITAS</td>
<td>Técnico em Mecânica</td>
</tr>
<tr>
<td>16</td>
<td>FLÁVIA COUTO CAMBRAIA</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>17</td>
<td>FREDERICO DONIZETTI DA SILVA BORGES</td>
<td>Técnico em Tecnologia da Informação</td>
</tr>
<tr>
<td>18</td>
<td>GISELE ADRIANA DA SILVA CASTRO</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>19</td>
<td>IZABELE FIGUEIREDO MASCARENHAS</td>
<td>Auxiliar de Biblioteca</td>
</tr>
<tr>
<td>20</td>
<td>JOICE NARA DE FARIA</td>
<td>Assistente em Administração</td>
</tr>
<tr>
<td>21</td>
<td>JOSIANE DA SILVA ROSA</td>
<td>Assistente em Administração</td>
</tr>
</tbody>
</table>
8.7. Certificados e diplomas a serem emitidos

Ao aluno que concluir, com êxito, todos os componentes curriculares exigidos no curso, obtendo aproveitamento mínimo de 60% (sessenta por cento) de todas disciplinas e frequência mínima de 75% (setenta e cinco por cento) da carga horária da disciplina, será concedido o Diploma de Técnico em Eletrotécnica, com validade em todo o território nacional.
8.8. Avaliação do Curso

O curso de Técnico em Eletrotécnica será avaliado continuamente pelos discentes e docentes. A Coordenação do Curso é responsável por receber resultados de avaliações bem como apontamentos pelo corpo discente e docente e remetê-los à apreciação do Colegiado de Curso. A partir da análise realizada pelos membros do Colegiado de Curso, as ações e propostas visando a constante atualização e melhoria serão apreciadas pelo órgão. Assim, o coordenador deve atuar como o gestor que possibilita a integração dos docentes, discentes e demais colaboradores na busca pelo aprimoramento contínuo do curso, sempre auxiliado pelo Colegiado do Curso.

Anualmente, o Projeto Pedagógico do Curso passará por uma avaliação e atualização. Para tal, devem ser observadas as Orientações para Elaboração e Atualização de Projetos Pedagógicos dos Cursos Técnicos do IFMG, elaboradas pela Pró-Reitoria de Ensino que destacam os seguintes procedimentos:

a) o Coordenador de Curso, considerando os debates e documentação complementar, orientativa e/ou regulamentadora emanados do Colegiado de curso relativamente ao Projeto Pedagógico, deverá submeter a proposta de alteração ou atualização do mesmo ao Colegiado de Curso;

b) o Colegiado de Curso julgará a pertinência das alterações e, sendo estas aprovadas, procederá a atualização do Projeto Pedagógico do Curso;

c) o Projeto Pedagógico de Curso deverá ser encaminhado à Diretoria de Ensino do campus, que por sua vez realizará uma avaliação das alterações propostas à luz da legislação vigente, observando aspectos legais e didático-pedagógicos, para emitir seu parecer sobre o deferimento ou indeferimento da atualização;

d) em caso de indeferimento, a Diretoria de Ensino emitirá parecer justificando sua decisão e o encaminhará ao Colegiado de Curso para revisão ou arquivamento da proposta de alteração;
e) em caso de deferimento, a Diretoria de Ensino encaminhará o Projeto Pedagógico de Curso atualizado ao Setor de Registro e Controle Acadêmico do campus e à Pró-Reitoria de Ensino;

f) no encaminhamento do Projeto Pedagógico de Curso atualizado à Pró-Reitoria de Ensino, as alterações realizadas deverão ser explicitadas e justificadas.

Também serão analisadas as avaliações feitas internamente pela Comissão Própria de Avaliação - CPA e externamente, pelo Sistema de Avaliação da Educação Básica – SAEB do INEP/MEC.

A CPA é o órgão responsável pela coordenação, condução e articulação do processo interno de autoavaliação institucional do IFMG, em conformidade com o que preceitua a Lei n° 10.861, de 14 de abril de 2004, que institui o Sistema Nacional de Avaliação da Educação Superior (SINAES).

A CPA mantém a seguinte forma de organização: uma Comissão Central, estabelecida na Reitoria do IFMG, e uma Comissão Local atuante em cada um dos campi do IFMG.

A CPA Central é composta por um representante de cada Pró-Reitoria, um representante dos Técnicos Administrativos e seus respectivos suplentes.

A CPA Local é composta por dois representantes do corpo docente, dois servidores técnicos administrativos, dois representantes do corpo discente, dois representantes da sociedade civil organizada e seus respectivos suplentes.

A composição da Comissão Própria de Avaliação – CPA – Campus Formiga está conforme Portaria N° 175 de 12 de setembro de 2019:

<table>
<thead>
<tr>
<th>Nome</th>
<th>Função / Segmento</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALCIDES FARIA ANDRADE</td>
<td>Presidente / docente</td>
</tr>
</tbody>
</table>
A CPA avalia anualmente todos os setores da instituição, de acordo com as dez dimensões estabelecidas pelo SINAES que são:

1. Missão
2. Políticas Institucionais
3. Responsabilidade social
4. Comunicação
5. Políticas de pessoal
6. Organização e gestão
7. Infraestrutura
8. Avaliação
9. Políticas estudantis
10. Sustentabilidade financeira

A partir dessas dimensões, realiza-se o processo de avaliação, que inclui a avaliação dos cursos técnicos. Os participantes realizam a discussão do processo de autoavaliação, a coleta de dados por meio de instrumentos de pesquisa elaborados pela CPA, a elaboração do relatório de autoavaliação institucional e a divulgação dos resultados. São avaliados os diversos aspectos do curso: a atuação dos docentes e coordenadores; a atuação dos discentes; atuação dos setores de registros acadêmicos e as questões relativas ao ensino, à pesquisa e extensão, bem como à infraestrutura geral do campus, como o acervo da biblioteca, espaços físicos do campus e laboratórios.
Os resultados da autoavaliação geram, a cada ano, um relatório geral do IFMG, e relatórios específicos de cada campus, produzido pelas CPA Local.

Com base nos relatórios elaborados pela CPA Local, o Colegiado de Curso procura identificar fragilidades e potencialidades do curso, propondo ações de melhorias ou adaptações para apreciação do Colegiado de Curso.

O Sistema de Avaliação da Educação Básica (Saeb) é um conjunto de avaliações externas em larga escala que permite ao Inep realizar um diagnóstico da educação básica brasileira e de fatores que podem interferir no desempenho do estudante.

Por meio de testes e questionários, aplicados a cada dois anos na rede pública e em uma amostra da rede privada, o Saeb reflete os níveis de aprendizagem demonstrados pelos estudantes avaliados, explicando esses resultados a partir de uma série de informações contextuais.

O Saeb permite que as escolas e as redes municipais e estaduais de ensino avaliem a qualidade da educação oferecida aos estudantes. O resultado da avaliação é um indicativo da qualidade do ensino brasileiro e oferece subsídios para a elaboração, o monitoramento e o aprimoramento de políticas educacionais com base em evidências.

As médias de desempenho dos estudantes, apuradas no Saeb, juntamente com as taxas de aprovação, reprovação e abandono, apuradas no Censo Escolar, compõem o Índice de Desenvolvimento da Educação Básica (Ideb).

O Inep divulga a cada edição do Saeb, resultados agregados para os estratos Brasil, Unidades da Federação e Regiões, desagregados por dependência administrativa e localização. A partir de 2005, com a criação da Prova Brasil, municípios e escolas também passaram a ter seus resultados divulgados. A disponibilização dos resultados variou ao
longo das edições entre relatórios consolidados, sistemas de acesso a resultados ou boletins de desempenho.

Maiores informações sobre a avaliação Saeb podem ser encontradas no site: http://portal.inep.gov.br/educacao-basica/saeb

9. CONSIDERAÇÕES FINAIS

Espera-se que o curso Técnico em Eletrotécnica, integrado proposto neste Projeto Pedagógico contribua para a formação profissional na região de Formiga, proporcionando oportunidades de qualificação e de acesso ao mercado de trabalho.

O curso proposto possui as seguintes características: presencial, modalidade integrada, de oferta anual, duração mínima de três anos e máxima de cinco anos, carga horária mínima de 3.200 horas, estando inserido eixo temático relacionado a Controle e Processos Industriais.

O presente projeto pedagógico teve como objetivo expor as especificidades do curso Técnico em Eletrotécnica, integrado ofertado pelo IFMG – Campus Formiga. Também demonstra as formas de ingresso ao curso e sua conclusão, passando pela matriz disciplinar, atividades complementares e estágio não obrigatório. Ressalta-se a importância e a necessidade do Projeto passar por constantes avaliações, sendo submetido a discussões ocorridas no Colegiado do Curso. Estas avaliações se pautam na urgente coerência com o mercado profissional e as habilidades a serem desenvolvidas pelos estudantes.

A melhoria contínua do curso terá como referências a demanda de perfil profissional indicada pelo mercado, considerações levantadas em Conselhos de Classe, as reuniões com pais e responsáveis e outras fontes de informação que se mostrarem pertinentes.

Uma vez que o Projeto Pedagógico do Curso é um trabalho em construção permanente os trabalhos de atualização e revisão serão sempre norteados pelas seguintes diretrizes:
● Observar a consonância entre as Diretrizes Educacionais e Objetivos do Projeto com o que está sendo desenvolvido na prática;
● Observar a consonância entre a prática pedagógica e a realidade do curso;
● Adequação entre as formas de mediação descritas como meta e as necessidades apontadas no projeto.

O Colegiado irá avaliar, ao longo da execução do Curso, a pertinência, coerência, coesão, a eficácia e a consistência dos componentes curriculares. Tais avaliações ocorrerão com periodicidade anual, envolvendo o colegiado do curso. Nessas avaliações, serão considerados: (1) o desempenho dos alunos no curso; (2) resultados de avaliações do curso aplicadas aos discente; (3) considerações e eventuais estudos sobre demandas de mão-de-obra na região.

10. REFERÊNCIAS

BRASIL. Decreto nº 5.296, de 02 de dezembro de 2004. Regulamenta as Leis nos 10.048, de 8 de novembro de 2000, que dá prioridade de atendimento às pessoas que específica, e 10.098, de 19 de dezembro de 2000, que estabelece normas gerais e critérios básicos para a promoção da acessibilidade das pessoas portadoras de deficiência ou com mobilidade re-

BRASIL. Lei no 11.645, de 10 de março de 2008. Altera a Lei no 9.394, de 20 de dezembro de 1996, modificada pela Lei nº 10.639, de 09 de janeiro de 2003, que estabelece as diretrizes e bases da educação nacional, para incluir no currículo oficial da rede de ensino a

BRASIL. Lei nº 13.415 de 16 de fevereiro de 2016. Altera as Leis n° 9.394, de 20 de dezembro de 1996, que estabelece as diretrizes e bases da educação nacional, e 11.494, de 20 de junho 2007, que regulamenta o Fundo de Manutenção e Desenvolvimento da Educação Básica e de Valorização dos Profissionais da Educação, a Consolidação das Leis do Trabalho - CLT, aprovada pelo Decreto-Lei nº 5.452, de 1º de maio de 1943, e o Decreto-Lei n° 236, de 28 de fevereiro de 1967; revoga a Lei n° 11.161, de 5 de agosto de 2005; e insti-

APÊNDICE A - REGIMENTO INTERNO DO COLEGIADO DO CURSO TÉCNICO INTEGRADO EM ELETROTÉCNICA

CAPÍTULO I
DAS DISPOSIÇÕES PRELIMINARES

Art. 1º Esse regimento tem como finalidade normatizar as atividades relacionadas ao Colegiado do Curso Técnico em Eletrotécnica Integrado ao Ensino Médio do IFMG – Campus Formiga, órgão máximo do Curso.

CAPÍTULO II DA NATUREZA

Art. 2º O Colegiado do Curso Técnico em Eletrotécnica Integrado ao Ensino Médio de IFMG Campus – Formiga, é o órgão máximo do curso, que tem caráter deliberativo, de forma que a coordenação, o planejamento, o acompanhamento, o controle e a avaliação das atividades de ensino do curso serão exercidas pelo Colegiado de forma autônoma e independente.

CAPÍTULO III
DA COMPOSIÇÃO DO COLEGIADO DE CURSO

Art. 3º O Colegiado do Curso Técnico em Eletrotécnica Integrado ao Ensino Médio deve ser composto estritamente por servidores lotados no IFMG Campus – Formiga.

§ 1º O Colegiado de Curso será constituído por:

I – Coordenador do Curso, que é o presidente do colegiado;
II – Representantes do corpo docente do curso;
III – Representante do corpo discente;
IV – Representante da Diretoria de Ensino;
V – Técnico administrativo ligado ao curso, se necessário.

CAPÍTULO IV
DA ELEIÇÃO

Art. 4º Cada representante será eleito por seus pares exceto o representante da Diretoria de Ensino, que será indicado pelo Diretor de Ensino, o Representante Discente, eleito pelos
seus pares, e o técnico administrativo que pode ser convidado pela Coordenação do Curso (em exercício, antes da eleição) para integrar o Colegiado.

§ 1º Os 4 (quatro) titulares serão eleitos em reunião da Área da Engenharia Elétrica do IFMG Campus-Formiga, para um mandato de 2 (dois) anos, com possibilidade de recondução.

§ 2º A Coordenação do Curso ficará responsável por realizar o processo eleitoral que elegerá um representante titular e um representante suplente entre os discentes, para o Colegiado do Curso.

§ 3º Em caso de inexistência de interessados, ou sendo estes insuficientes para preencher as vagas existentes, cada docente e/ou discente não candidato será considerado candidato nato.

§ 4º Casos omissos serão decididos pelo Colegiado de Curso vigente.

CAPÍTULO V
Das competências

Art. 5º Compete ao Colegiado do Curso:

I – Validar e implementar o Projeto Pedagógico, proposto pelo NDE ou comissão específica, do curso em conformidade com as diretrizes Curriculares Nacionais, com o Plano de Desenvolvimento Institucional e com o Projeto Político-Pedagógico Institucional bem como submetê-lo às demais instâncias;

II – Assessorar na coordenação e supervisão do funcionamento do curso;

III – Estabelecer mecanismo de orientação acadêmica aos discentes do curso;

IV – Promover continuamente a melhoria do curso, especialmente em razão dos processos de autoavaliação e de avaliação externa;

V – Fixar a sequência recomendável das disciplinas e os pré-requisitos e co-requisitos estabelecidos no Projeto Pedagógico do curso;

VI – Emitir parecer sobre assuntos de interesse do curso;

VII – Julgar, em grau de recurso, as decisões do Coordenador de Curso;

VIII – Propor normas relativas ao funcionamento do curso para a deliberação da Diretoria de Ensino do campus.

CAPÍTULO VI
Da convocação e participação das reuniões

Art. 6º O Colegiado de Curso se reunirá ordinariamente, no mínimo 2 (duas) vezes por semestre, e extraordinariamente, sempre que convocado pelo Presidente ou por solicitação de 50% (cinquenta por cento) + 1 (um) de seus membros. A convocação poderá ser realizada por meio físico ou eletrônico com antecedência mínima de 48 (quarenta e oito) horas, com apresentação de pauta.
§ 1º. O Colegiado de Curso somente se reunirá com a presença mínima de 50% (cinquenta por cento) + 1(um) de seus membros.

§ 2º. O suplente, de representante discente, só assumirá a titularidade nas reuniões do Colegiado em caso do membro eleito titular estar impossibilitado de participar das reuniões. O próprio Colegiado de Curso determinará a necessidade de substituição do referido membro, caso necessário.

§ 3º. Caso o docente, discente, representante da Diretoria de Ensino ou técnico administrativo titular estiver impossibilitado de participar das reuniões, as faltas devem ser justificadas para os membros do Colegiado de Curso, no prazo de até 24 horas após a reunião.

§ 4º. Caso o docente, discente, representante da Diretoria de Ensino ou técnico administrativo titular faltar 3 (três) vezes consecutivas nas reuniões, será enviado um memorando para a Diretoria de Ensino comunicando seu desligamento do Colegiado de Curso Técnico Integrado em Eletrotécnica.

CAPÍTULO VII
DAS DELIBERAÇÕES

Art. 7º As decisões do Colegiado de Curso serão tomadas por maioria simples de votos, com base no número de membros presentes. Para dar prosseguimento nos processos criados pelas deliberações do Colegiado, a figura do Coordenador se torna executiva. Em caso de empate das votações, o Coordenador do Curso irá decidir sobre o assunto.

Art. 8º Das reuniões, um dos membros lavrará a ata do Colegiado do Curso, que será lida, aprovada e assinada pelos membros presentes na reunião.

Parágrafo único. O Coordenador do Curso pode designar comissões ou docentes (do Colegiado ou que ministram aulas para o Curso) para auxiliar na execução de processos criados por deliberações que envolvam maior complexidade.

CAPÍTULO VIII
DAS DISPOSIÇÕES FINAIS

Art. 9º Casos omissos serão dirimidos ao Presidente do Colegiado, caso persista, as omissões devem ser dirimidas ao Conselho Acadêmico do Campus.
APÊNDICE B – DIRETRIZES DE ATIVIDADES ACADÊMICAS COMPLEMENTARES

CAPITULO I. DAS ATIVIDADES CURRICULARES COMPLEMENTARES

Art. 1°. A comprovação de realização de Atividades Curriculares Complementares (ACC) compreendem condição obrigatória para a integralização curricular do curso de Técnico em Eletrotécnica no Campus Formiga do Instituto Federal de Minas Gerais.

Art. 2°. O discente deverá comprovar a realização de, no mínimo, 65 (sessenta e cinco) horas de Atividades Curriculares Complementares condizentes com os eixos temáticos descritos no Anexo I deste regulamento e seguirá o fluxo descrito no Anexo III deste Apêndice.

Art. 3°. A identificação de Atividades Curriculares Complementares, a verificação da adequação destas com os Eixos Temáticos disciplinados no Anexo I e o arquivamento dos certificados de ACC, são de inteira responsabilidade do discente.

§ 1° O discente poderá utilizar atividades ofertadas pelo IFMG no computo da carga horária das Atividades Curriculares Complementares, sempre que estas forem certificadas e condizentes com o disposto neste regulamento.

§ 2° O Instituto Federal de Minas Gerais em hipótese alguma arcará com os custos decorrentes de atividades realizadas pelos discentes.

Art. 4°. As Atividades Curriculares Complementares serão consideradas para a validação apenas mediante a apresentação de certificação emitida pela ofertante da mesma.

Art. 5°. A validação das Atividades Curriculares Complementares acontecerá invariavelmente no semestre no qual o discente pleiteia integralização do curso.

Art. 6°. As Atividades Curriculares Complementares serão validadas na Coordenação de Curso por meio de formulário próprio (ANEXO I) e da apresentação das cópias dos certificados utilizados no computo. As cópias de certificados de curso ou atividades realizadas fora do campus deverão ser autenticadas em cartório.

Art. 7°. Os procedimentos gerais para a realização de Atividades Curriculares Complementares estão sucintamente descritos no diagrama descrito no ANEXO III.
Art. 8°. Todos os casos omissos a esta regra serão dirimidos pela Coordenação de Curso ou pelo Colegiado de Curso segundo critérios da primeira.
ANEXO I

RELAÇÃO DE CERTIFICADOS

<table>
<thead>
<tr>
<th>Natureza do certificado e nome da instituição emitente</th>
<th>Data da emissão do certificado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Local e data: __

Assinatura do aluno

Recebido em: _____/_____/20__

Secretaria de Extensão

Assinatura e carimbo do servidor
ANEXO II

TABELA DE PONTUAÇÃO DE HORAS DAS ATIVIDADES CURRICULARES COMPLEMENTARES

<table>
<thead>
<tr>
<th>Atividades Complementares (AC) - Atividades Acadêmico-Científico-Culturais</th>
<th>Limite de CH aceita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programa 1: Treinamento em informática, com certificado ou declaração - 1 hora equivale a 2 pontos, sendo no máximo 30 pontos.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 2: Participação em cursos de EAD em disciplinas profissionalizantes, com certificado ou declaração - 1 hora equivale a 2 pontos, sendo no máximo 30 pontos.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 3: Participação em cursos de marketing pessoal e comunicação, com certificado ou declaração - 1 hora equivale a 1 ponto, sendo no máximo 15 pontos.</td>
<td>15</td>
</tr>
<tr>
<td>Programa 4: Curso de línguas, com certificado ou declaração emitido por instituições sem vínculo ao IFMG - 15 pontos/semestre.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 5: Cursar disciplina optativa de Língua Espanhola (disciplina oferecida pelo IFMG campus Formiga)</td>
<td>60</td>
</tr>
<tr>
<td>Programa 6: Cursar disciplina optativa de Libras (disciplina oferecida pelo IFMG campus Formiga)</td>
<td>30</td>
</tr>
<tr>
<td>Programa 7: Participação em atividades de responsabilidade sócio-ambiental-cultural-educacional, com certificado ou declaração - 1 hora equivale a 1 ponto, sendo no máximo 15 pontos.</td>
<td>15</td>
</tr>
<tr>
<td>Programa 8: Proficiência em idiomas com certificado ou declaração.</td>
<td>90</td>
</tr>
<tr>
<td>Programa 9: Programa de monitoria, com certificado ou declaração - 25 pontos/semestre.</td>
<td>50</td>
</tr>
<tr>
<td>Programa 10: Oferta de minicurso/workshops/palestra em empresas, ou feiras tecnológicas, ou jornada científica ou cultural/extensão, com certificado ou declaração - 1 hora equivale a 5 pontos, com máximo 30 pontos.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 11: Participação em minicurso/workshop/palestra/curso em empresas, ou feiras tecnológicas, ou jornada científica ou evento cultural/extensão, com certificado ou declaração – 15 pontos por semestre, com máximo 30 pontos.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 12: Programa de iniciativa científica concluída, com certificado ou declaração – 1 programa equivale a 60 pontos.</td>
<td>60</td>
</tr>
<tr>
<td>Programa 13: Publicação de artigo em congresso com aceite.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 14: Publicação de artigo em revista com aceite.</td>
<td>60</td>
</tr>
<tr>
<td>Programa 15: Estágio interno não-remunerado, com certificado ou declaração - 15 pontos/semestre.</td>
<td>90</td>
</tr>
<tr>
<td>Programa 16: Participação em projetos de extensão, com certificado ou declaração – 1 programa equivale a 60 pontos.</td>
<td>60</td>
</tr>
<tr>
<td>Programa 17: Curso de plano de negócios, com certificado ou declaração - 1 hora equivale a 2 pontos.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 18: Curso de empreendedorismo/innovação tecnológica, com certificado ou declaração – 1 hora equivale a 2 pontos.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 19: Tópicos de formação gerencial, com certificado ou declaração - 1 hora equivale a 2 pontos.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 20: Participação em empresa júnior, com certificado ou declaração (mínimo 6 meses de participação).</td>
<td>15</td>
</tr>
<tr>
<td>Programa 21: Participação em colegiado, conselho acadêmico, com certificado ou declaração – 1 ano equivale a 15 pontos.</td>
<td>30</td>
</tr>
<tr>
<td>Programa 22: Organização/participação em eventos/processo seletivo no IFMG, com</td>
<td>15</td>
</tr>
</tbody>
</table>
certificado ou declaração - 1 participação equivale a 15 pontos

| Carga horária total exigida | 65 |

O discente deverá cumprir 65 horas em atividades complementares que deverão ser cumpridas durante o período de matrícula do discente no curso atual desta instituição (da matrícula à conclusão). As formas de comprovação serão: atestados, declarações, certificados ou qualquer outro documento idôneo os quais precisam ter assinatura do responsável.
ANEXO III

FLUXO DE ATIVIDADES CURRICULARES COMPLEMENTARES

O discente alcançou as horas mínimas?

Sim

Não

Aquisição do certificado após o término da Atividade Complementar

Quem: Discente/FMG

Execução da Atividade Complementar

Quem: Discente/FMG

Identificação da Atividade Complementar

Quem: Discente/FMG

Envio do caso para análise da Coordenação de Curso

Quem: Secretaria de Extensão

Coordenação de caso favorável ao discente?

Sim

Não

Emissão do Certificado de Atividades Complementares assinado pelo(a) Diretor(a) da Secretaria de Extensão e pela Coordenação de Curso

Quem: Secretaria de Extensão

Recebimento do Certificado de Atividades Complementares e assinatura de recebimento

Quem: Discente/FMG

Envio da 2ª via do Certificado de Atividades Complementares para arquivamento na pasta do discente, na Secretaria Acadêmica

Quem: Secretaria de Extensão

Preenchimento do formulário para pedido do Certificado de Atividades Complementares

Quem: Discente/FMG

Onde: Secretaria de Extensão

Envio da(s) declaração(ões) da(s) Atividades Complementares, juntamente com o formulário devidamente preenchido

Quem: Discente/FMG

Onde: Secretaria de Extensão

Verificação de quantidade total de horas de Atividades Complementares, de acordo com a tabela de pontuação de horas complementares

Quem: Secretaria de Extensão

Ocorraram casos omitidos?

Sim

Não

Recebimento do Certificado de Atividades Complementares assinado pelo(a) Diretor(a) da Secretaria de Extensão e pela Coordenação de Curso

Quem: Secretaria de Extensão

Recebimento do Certificado de Atividades Complementares e assinatura de recebimento

Quem: Discente/FMG

Envio da 2ª via do Certificado de Atividades Complementares para arquivamento na pasta do discente, na Secretaria Acadêmica

Quem: Secretaria de Extensão